ЛЕКЦИЯ 6

Различные обобщения и границы применимости

§ 10. Непродолжаемое решение интегрального уравнения Вольтерра

1. Существование и единственность непродолжаемого решения интегрального уравнения. Рассмотрим в банаховом пространстве B с нормой $\|\cdot\|$ интегральное уравнение

$$u(t) = \bar{u}(t) + \int_0^t K(t, \tau) A(\tau, u(\tau)) d\tau.$$
(1)

Условия на ядро $K(t,\tau):\mathbb{R}^2_+\to L(B,B)^1$ и функции $A(t,u):\mathbb{R}_+\times B\to B, \bar{u}(t):\mathbb{R}_+\to B$ будут сформулированы ниже. Интегралы здесь и далее понимаются в смысле Римана (см. лекцию 1).

Определение 1. Назовём функцию u(t) решением уравнения (1) на промежутке $\mathcal{T} \equiv [0; T]^2$, если $u(t) \in C(\mathcal{T}, B)$ и u(t) удовлетворяет уравнению (1) при всех $t \in \mathcal{T}$.

Замечание 1. В дальнейшем слова «уравнения (1)» будем часто опускать.

Замечание 2. Как видно, мы используем не понятие «решение», а понятие «решение на промежутке». Если $u_1(t)$, $u_2(t)$ — решения соответственно на промежутках \mathcal{T}_1 и \mathcal{T}_2 и $\mathcal{T}_1 \neq \mathcal{T}_2$, то они считаются разными решениями независимо от совпадения значений функций $u_1(t)$ и $u_2(t)$ на $\mathcal{T}_1 \cap \mathcal{T}_2$.

Определение 2. Назовём решение u_2 на промежутке \mathcal{T}_2 *продолжением* решения $u_1(t)$ на промежутке \mathcal{T}_1 , если

1)
$$\mathcal{T}_2 \supseteq \mathcal{T}_1$$
 и 2) $u_2(t) = u_1(t)$ на \mathcal{T}_1 .

Замечание 3. Нам удобно использовать такую терминологию, в которой решение является своим собственным продолжением.

Определение 3. Решение u_2 на промежутке \mathcal{T} назовём *непродолжаемым*, если оно не имеет продолжения, отличного от него самого, т. е. если не существует такого решения $\tilde{u}(t)$ на промежутке $\widetilde{\mathcal{T}}$, что

1)
$$\tilde{u}(t)$$
 — продолжение решения $u(t)$, 2) $\tilde{\mathcal{T}} \supset \mathcal{T}$.

Если же такое решение $\tilde{u}(t)$ существует, то решение u(t) назовём продолжаемым.

Для формулировки условий на функцию A(t,u) рассмотрим метрическое пространство $\mathbb{R}_+ \times B$ с расстоянием

$$\rho((t_1, u_1), (t_2, u_2)) = \max(|t_1 - t_2|, ||u_1 - u_2||).$$
(2)

Очевидно, это пространство полно. Пусть отображение

$$A(t,u): \mathbb{R}_+ \times B \to B$$

¹Здесь и далее $\mathbb{R}_+ \equiv [0; +\infty)$.

²Т. е. $\mathcal{T} = [0; T]$ или $\mathcal{T} = [0; T)$, причём в последнем случае допускается $T = +\infty$. Если не оговорено иное, промежуток \mathcal{T} всегда начинается с 0 и $0 \in \mathcal{T}$.

обладает свойствами (A_1) и (A_2) :

- (A_1) оно непрерывно в смысле метрики (2);
- (A_2) существует такая функция

$$\mu(t,s): \mathbb{R}^2_+ \to \mathbb{R}_+,$$

ограниченная на каждом прямоугольнике $[0;T] \times [0;S]$ (T,S>0), что

$$\forall t \geqslant 0, \ \forall u_1, u_2 \in B \ \|A(t, u_1) - A(t, u_2)\| \leqslant \mu(t, \max(\|u_1\|, \|u_2\|)) \|u_1 - u_2\|.$$

Сразу отметим, что из (A_1) вытекает свойство (A_3) :

 (A_3) функция $\nu(t) \equiv \|A(t,\theta)\|$ (где θ — нулевой элемент пространства B) ограниченна на каждом отрезке [0;T]. Действительно, в силу (A_1) числовая функция $\|A(t,\theta)\|$ непрерывна при всех $t\geqslant 0$.

Далее, из (A_2) и (A_3) следует свойство

 (A_4) существует такая функция

$$\lambda(t,s): \mathbb{R}^2_+ \to \mathbb{R}_+,$$

ограниченная на каждом прямоугольнике $[0;T] \times [0;S]$ (T,S>0), что

$$\forall t \geqslant 0, \forall u \in B \ \|A(t, u)\| \leqslant \lambda(t, \|u\|).$$

Действительно, имеем

$$||A(t,u)|| \le ||A(t,\theta)|| + ||A(t,u) - A(t,\theta)|| \le \nu(t) + \mu(t,||u||)||u|| =: \lambda(t,||u||),$$

причём

$$\sup_{t \in [0;T]} \lambda(t,s) \leqslant \sup_{t \in [0;T]} \nu(t) + S \sup_{t \in [0;T]} \mu(t,s).$$

$$s \in [0;S]$$

$$s \in [0;S]$$

Нам понадобится лемма, доказанная в лекции 3. Для удобства напомним её формулировку. **Лемма 1.** Пусть $u(t) \in C([a;b],B), [a;b] \subset \mathbb{R}_+$. Тогда сложная функция $f(t) \equiv A(t,u(t))$

(где A — введённое выше отображение) непрерывна: $f(t) \in C([a;b],B)$.

Теперь сформулируем и докажем основную теорему.

Теорема 1. Пусть

- 1) $\bar{u}(t) \in C(\mathbb{R}_+, B);$
- 2) ядро $K(t,\tau)$ непрерывно по совокупности переменных на \mathbb{R}^2_+ (в равномерной операторной топологии, т. е. по норме банаховой алгебры L(B,B));
- 3) функция A(t,u) обладает свойствами (A_1) и (A_2) .

Тогда верны следующие утверждения.

1. Существует хотя бы одно решение u(t) на промежутке $\mathcal{T},\,\mathcal{T}\neq\varnothing,\,\mathcal{T}\neq\{0\}.$

- 2. Из любых двух решений u_1 , u_2 одно является продолжением другого. (В частности, совпадающие решения являются продолжениями друг друга.)
- 3. Если u(t) решение на ompeske [0;T], то решение u(t) продолжаемо. (В частности, «решение» $\bar{u}(0)$ продолжаемо с «отрезка» $\{0\}$, как следует из п. 1.)
- 4. Существует такое $T_0 > 0$ и такое решение $u_0(t)$ на промежутке $\mathcal{T}_0 = [0; T_0)$, что $u_0(t)$ непродолжаемое решение.
- 5. Непродолжаемое решение единственно.
- 6. Для непродолжаемого решения верно, что если $T_0 < +\infty$, то

$$\lim_{t \to T_0 - 0} \|u(t)\| = +\infty. \tag{3}$$

При этом если $K(t,\tau) \equiv I$ (единичный оператор), то непродолжаемое решение является не просто неограниченным, но бесконечно большим:

$$\lim_{t \to T_0 - 0} ||u(t)|| = +\infty. \tag{4}$$

В случае $T_0 = +\infty$ соотношение (3) (соответственно (4)) может как выполняться, так и не выполняться.

Замечание 4. В частности, можно рассматривать числовые ядра $K(t,\tau): \mathbb{R}^2_+ \to \mathbb{R}$: банахова алгебра \mathbb{R} изометрически изоморфна подалгебре скалярных операторов в L(B,B).

Доказательство.

1. Для каждого T > 0 рассмотрим банахово пространство

$$\mathbb{B}_T := C([0;T], B), \quad ||u||_{\mathbb{B}_T} \equiv \sup_{t \in [0;T]} ||u(t)||,$$

и оператор $\mathbb{A}_T : \mathbb{B}_T \to \mathbb{B}_T$,

$$\mathbb{A}_T(u) := \bar{u}(t) + \int_0^t K(t,\tau) A(\tau, u(\tau)) d\tau.$$

Заметим, что при условии непрерывности функции u(t) интеграл в правой части последней формулы непрерывен. (Это следует из леммы 1 и стандартных оценок, использующих равномерную непрерывность ядра $K(t,\tau)$ на любом прямоугольнике $[0;T_1]\times[0;T_2]$). Поэтому функция $u(t)\in C([0;T],B)$ будет решением уравнения (1) тогда и только тогда, когда она является решением уравнения

$$u = \mathbb{A}_T(u) \tag{5}$$

в банаховом пространстве \mathbb{B}_T .

Сейчас мы укажем, как выбрать T>0 таким образом, чтобы доказать однозначную разрешимость уравнения (5) методом сжимающих отображений. Для этого зафиксируем некоторое произвольно выбранное R>0 и рассмотрим замкнутое подмножество

$$\mathbb{B}_{T}^{R} = \left\{ u(t) \in \mathbb{B}_{T} \mid \sup_{t \in [0;T]} \|u(t) - \bar{u}(t)\| \equiv \|u - \bar{u}\|_{\mathbb{B}_{T}} \leqslant R \right\}.$$

В силу общих свойств метрических пространств множество \mathbb{B}_T^R само является полным метрическим пространством относительно расстояния, порождённого нормой пространства \mathbb{B}_T . Итак, нам требуется, чтобы оператор \mathbb{A}_T а) не выводил из множества \mathbb{B}_T^R ; б) являлся в нём сжимающим.

Для а) проведём оценку

$$\left\| \int_{0}^{t} K(t,\tau) A(\tau, u(\tau)) d\tau \right\|_{\mathbb{B}_{T}} = \sup_{t \in [0;T]} \left\| \int_{0}^{t} K(t,\tau) A(\tau, u(\tau)) d\tau \right\| \leqslant$$

$$\leqslant \int_{0}^{T} \|K(t,\tau)\| \|A(\tau, u(\tau))\| d\tau \leqslant T \sup_{t,\tau \in [0;T]} \|K(t,\tau)\| \sup_{t \in [0;T]} \lambda(t,s). \quad (6)$$

$$s \in [0; \|\bar{u}(t)\|_{\mathbb{B}_{T}} + R]$$

Для б) — оценку

$$\left\| \int_{0}^{t} K(t,\tau) A(\tau,u_{1}(\tau)) d\tau - \int_{0}^{t} K(t,\tau) A(\tau,u_{2}(\tau)) d\tau \right\|_{\mathbb{B}_{T}} \leq$$

$$\leq \int_{0}^{T} \|K(t,\tau)\| \|A(\tau,u_{1}(\tau)) - A(\tau,u_{2}(\tau))\| d\tau \leq$$

$$\leq \sup_{t,\tau \in [0;T]} \|K(t,\tau)\| \sup_{t \in [0;T]} \mu(t,s) \int_{0}^{T} \|u_{1}(\tau) - u_{2}(\tau)\| d\tau \leq$$

$$\leq \sup_{t,\tau \in [0;T]} \|K(t,\tau)\| \sup_{t \in [0;T]} \mu(t,s) \int_{0}^{T} \|u_{1}(\tau) - u_{2}(\tau)\| d\tau \leq$$

$$\leq T \sup_{t,\tau \in [0;T]} \|K(t,\tau)\| \sup_{t \in [0;T]} \mu(t,s) \|u_{1} - u_{2}\|_{\mathbb{B}_{T}}.$$
 (7)

Заметим, что в силу свойств функций μ и λ , а также непрерывности функций $\bar{u}(t)$ и $K(t,\tau)$ точные верхние грани в (6) и (7) конечны (и, очевидно, не возрастают при уменьшении T). Поэтому существует такое T>0, что выполняются условия

$$\begin{cases} T \sup_{t,\tau \in [0;T]} \|K(t,\tau)\| & \sup_{t \in [0;T]} \lambda(t,s) \leqslant R, \\ & t \in [0;T] \\ s \in [0;\|\bar{u}(t)\|_{\mathbb{B}_T} + R] \\ T \sup_{t,\tau \in [0;T]} \|K(t,\tau)\| & \sup_{t \in [0;T]} \mu(t,s) \leqslant \frac{1}{2}. \\ s \in [0;\|\bar{u}(t)\|_{\mathbb{B}_T} + R] \end{cases}$$

В этом случае в силу принципа сжимающих отображений уравнение (5) однозначно разрешимо, а поэтому и исходное уравнение (1) имеет единственное решение на промежутке [0; T].

2. Рассмотрим сначала случай, когда $\mathcal{T}_1 = \mathcal{T}_2 =: \mathcal{T}$. Предположим, что $u_1(t) \not\equiv u_2(t)$ на \mathcal{T} . Заметим, что множество точек t, где $u_1(t) = u_2(t)$, является замкнутым подмножеством промежутка \mathcal{T} как прообраз замкнутого множества $\{\theta\}$ при непрерывном отображении $u_2 - u_1$, а

поэтому множество \mathfrak{T} , где равенство решений нарушается, открыто в \mathcal{T} . Следовательно, имеется точка $T^* = \inf \mathfrak{T}$, причём $u_1(T^*) = u_2(T^*) =: u^*$, и такое T^{**} , что $(T^*; T^{**}] \subset \mathfrak{T}$. Но тогда каждая из функций $u_1(t)$, $u_2(t)$ является решением уравнения

$$u(t) = \bar{u}(t) + u^* - \bar{u}(T^*) + \int_{T^*}^t K(t, \tau) A(\tau, u(\tau)) d\tau$$

на отрезке $[T^*; T^{**}]$. Уменьшив, если потребуется, величину T^{**} , мы с помощью рассуждений, аналогичных п. 1, сможем доказать единственность решения этого уравнения на отрезке $[T^*; T^{**}]$ и прийти к противоречию.

Теперь рассмотрим случай, когда промежутки \mathcal{T}_1 и \mathcal{T}_2 различны. Пусть для определённости $\mathcal{T}_2 \supsetneq \mathcal{T}_1$. Тогда, перейдя к функциям $u_1(t)$ и $u_2|_{\mathcal{T}_1}(t)$, мы получаем предыдущий случай, невозможность которого уже доказана.

3. Представим уравнение (1) в виде

$$u(t) = \bar{u}(t) + \int_T^0 K(t,\tau)A(\tau,u(\tau)) d\tau + \int_T^t K(t,\tau)A(\tau,u(\tau)) d\tau.$$

Заметим, что $\bar{u}(t)$ — заданная функция, а функция $\int_T^0 K(t,\tau) A(\tau,u(\tau)) d\tau$ аргумента t тоже известна при всех t, поскольку интегрирование в этом интеграле, зависящем от u, распространяется лишь на отрезок [0,T], где функция u уже предполагается известной. Следовательно, можно положить

$$\bar{\bar{u}}(t) := \bar{u}(t) + \int_{T}^{0} K(t,\tau) A(\tau, u(\tau)) d\tau$$

и рассмотреть при $t \geqslant T$ уравнение

$$u(t) = \bar{\bar{u}}(t) + \int_T^t K(t, \tau) A(\tau, u(\tau)) d\tau,$$

аналогичное исходному. Осталось применить рассуждения, аналогичные п. 1. Очевидно, что полученные решения будут «сшиваться» непрерывно и дадут продолжение решения u(t) с отрезка [0,T] на больший отрезок.

4. Пусть

 $\mathfrak{T}=\{T>0: \text{ существует решение задачи (1) на промежутке } [0;T]\}, \quad T_0=\sup \mathfrak{T}\leqslant +\infty.$

В силу п. 1 множество \mathfrak{T} непусто и содержит некоторый отрезок ненулевой длины. Поэтому $T_0 > 0$ и существует такая последовательность решений $\{u_n(t)\}_{n=1}^{\infty}$ на промежутках $[0; T_n]$, что $T_n > 0$, $T_n \uparrow T_0$. В силу п. 2 любые два решения уравнения (1) совпадают на их общей области определения. Поэтому при всех $n \in \mathbb{N}$ решение $u_{n+1}(t)$ есть продолжение решения $u_n(t)$. Тогда можно построить функцию

$$u(t) = \begin{cases} u_1(t), & t \in [0; T_1], \\ u_{n+1}(t), & t \in (T_n; T_{n+1}], & n \in \mathbb{N}. \end{cases}$$

Эта функция будет решением уравнения (1) на промежутке $[0; T_0)$. Если $T_0 = +\infty$, то u(t) будет очевидным образом непродолжаемым. Если $T_0 < +\infty$, то по самому определению T_0 максимально возможный промежуток существования решения — это либо полуинтервал $[0; T_0)$, либо отрезок $[0; T_0]$. Однако последнее исключается в силу п. 3, ведь тогда существовало бы некоторое решение на промежутке, большем отрезка $[0; T_0]$, а следовательно, и на некотором отрезке $[0; T_1]$ с $T_1 > T_0$. Следовательно, решение $u(t), t \in [0; T_0)$, непродолжаемо.

Итак, существует непродолжаемое решение, определённое на полуоткрытом промежутке $[0; T_0)$ с $T_0 \leqslant +\infty$.

- 5. Пусть $u_1(t)$, $u_2(t)$ два непродолжаемых решения. Тогда в силу п. 2 одно из них является продолжением другого. Следовательно, или они совпадают, или одно из них является продолжаемым.
- 6. Пусть u(t) решение на $[0; T_0)$, $T_0 < +\infty$ и u(t) непродолжаемое решение. Будем доказывать от противного. Предположим, что решение u(t) ограниченно, т. е. существует число C_0 такое, что

$$||u(t)|| \leq C_0, \quad t \in [0; T_0).$$

Но интеграл в правой части уравнения (1) удовлетворяет в левой полуокрестности точки T_0 условию Коши. Это вытекает из неравенства (где $0 < t_1 < t_2 < T_0$)

$$\left\| \int_{0}^{t_{2}} K(t_{2}, \tau) A(\tau, u(\tau)) d\tau - \int_{0}^{t_{1}} K(t_{1}, \tau) A(\tau, u(\tau)) d\tau \right\| \leq$$

$$\leq \int_{0}^{t_{1}} \|K(t_{2}, \tau) - K(t_{1}, \tau)\| \|A(\tau, u(\tau))\| d\tau + \int_{t_{1}}^{t_{2}} \|K(t_{2}, \tau)\| \|A(\tau, u(\tau))\| d\tau$$
(8)

с использованием равномерной непрерывности ядра $K(t,\tau)$ на любом прямоугольнике и свойства (A_4) . С другой стороны, функция $\bar{u}(t)$ непрерывна всюду по условию. Следовательно, функция u(t) непрерывно продолжима в точку T_0 . Обозначим продолженную функцию через $\tilde{u}(t)$. Тогда функция

$$\bar{u}(t) + \int_0^t K(t,\tau)A(\tau,\tilde{u}(\tau)) d\tau,$$

заведомо совпадающая с $u(t) = \bar{u}(t) + \int_0^t K(t,\tau)A(\tau,u(\tau)) d\tau$ на $[0;T_0)$, существует и непрерывна на $[0;T_0]$, а следовательно, её значение в точке T_0 совпадает с $\tilde{u}(T_0)$ в силу единственности непрерывного продолжения на замыкание. Следовательно, функция $\tilde{u}(t)$ является решением уравнения (1) на отрезке $[0;T_0]$, что противоречит условию непродолжаемости решения u(t) на промежутке $[0;T_0)$. Таким образом, соотношение (3) доказано.

Замечание 5. Дальнейшие рассуждения аналогичны проведённым в лекции 3 для дифференциального уравнения.

Покажем теперь, что в случае $K(t,\tau)\equiv I$ выполняется предельное соотношение (4). Надо доказать:

$$\forall M > 0 \ \exists \delta > 0 \ \forall t \in (T_0 - \delta; T_0) \cap [0; T_0) \ \|u(t)\| > M.$$

Предположим противное:

$$\exists M > 0 \ \forall \delta > 0 \ \exists t \in (T_0 - \delta; T_0) \cap [0; T_0) \ \|u(t)\| \leqslant M.$$
 (9)

Зафиксируем M из (9). В силу свойства (A_4) будем иметь

$$\forall t \in [0; T_0), \, \forall z \in B \ \left(\|z\| \leqslant 2M \Rightarrow \|A(t, z)\| \leqslant \sup_{t \in [0; T_0]} \lambda(t, s) =: E \right). \tag{10}$$

Выберем $\delta \leqslant \frac{M}{4E}$ из условия

$$\|\bar{u}(t'') - \bar{u}(t')\| < \frac{M}{4}$$
 при $|t'' - t'| < \delta$.

(Это возможно, поскольку функция $\bar{u}(t)$, как непрерывная на \mathbb{R}_+ , равномерно непрерывна на отрезке $[0;T_0]$.) Возьмём из (9) такое $t=t^*$, что $T_0-\delta < t^* < T_0$, $\|u(t^*)\| \leqslant M$. В силу (3) существует такое t^{**} , что $T_0-\delta < t^* < t^{**} < T_0$ и $\|u(t^{**})\| \geqslant 2M$. Но тогда в силу непрерывности функции u(t) существует такое $t^{***} \in (t^*;t^{**}]$, что

$$||u(t^{***})|| = 2M, \quad ||u(t)|| < 2M \text{ при всех } t \in (t^*; t^{***}).$$
 (11)

Имеем тогда, с одной стороны,

$$||u(t^{***}) - u(t^*)|| \ge ||u(t^{***})|| - ||u(t^*)|| = M,$$

а с другой, в силу уравнения (1), утверждений (11) и (10), а также выбора δ :

$$||u(t^{***}) - u(t^{*})|| \le ||\bar{u}(t^{***}) - \bar{u}(t^{*})|| + \int_{t^{*}}^{t^{***}} ||A(\tau, u(\tau))|| d\tau < 0$$

$$<\frac{M}{4} + |t^{***} - t^*|E \le \frac{M}{4} + \delta E \le \frac{M}{2}.$$

Полученное противоречие завершает доказательство п. 6 и всей теоремы.

Теорема доказана.

Замечание 6. Легко видеть, что в случае, когда ядро K не зависит от t и является непрерывной функцией аргумента τ , оно может быть «включено» в A(t,u), и поэтому соотношение (4) верно и в этом случае.

2. Пример непродолжаемого решения, не имеющего предела. В случае ядра, зависящего от t и удовлетворяющего условиям теоремы 1, соотношение (4) может не выполняться. Приведём один из возможных примеров. Для этого рассмотрим функцию

$$u(t) = 1 + \frac{1}{T_0 - t} \cos^2 \frac{1}{T_0 - t} \in C[0; T_0), \quad T_0 = \frac{2}{\pi},$$
 (12)

и построим интегральное уравнение вида (1), решением которого является функция (12), причём его ядро будет зависеть лишь от переменной t. Легко видеть, что при $t \to T_0 - 0$ функция (12) предела не имеет (потому что она принимает значение 1 сколь угодно близко к точке T_0), но

$$\lim_{t \to T_0 - 0} |u(t)| = +\infty.$$

Таким образом, функция (12) удовлетворяет соотношению (3), но не соотношению (4). Нужно найти такую функцию $K(t) \in C[0; +\infty)$, чтобы при $t \in [0; T_0)$ выполнялось тождество

$$u(t) = u(0) + K(t) \int_0^t (u(s))^k ds.$$

Натуральное k будет выбрано ниже. Поскольку u(0) = 1, имеем

$$1 + \frac{1}{T_0 - t} \cos^2 \frac{1}{T_0 - t} = 1 + K(t) \int_0^t \left(1 + \frac{1}{T_0 - s} \cos^2 \frac{1}{T_0 - s} \right)^k ds,$$

или

$$K(t) = \frac{\frac{1}{T_0 - t} \cos^2 \frac{1}{T_0 - t}}{\int_0^t \left(1 + \frac{1}{T_0 - s} \cos^2 \frac{1}{T_0 - s}\right)^k ds}, \quad T_0 = \frac{2}{\pi}.$$
 (13)

При всех натуральных k дробь в правой части доставляет непрерывную на интервале $t \in (0; T_0)$ функцию. С помощью правила Лопиталя нетрудно получить, что $K(t) \to 0$ при $t \to +0$. Если к тому же

$$K(t) \to 0$$
 при $t \to T_0 - 0$, (14)

то функция K(t) может быть продолжена до непрерывной функции аргумента $t \in [0; +\infty)$ и, тем самым, будет удовлетворять условию теоремы 1. Будем добиваться выполнения условия (14).

В силу бинома Ньютона с учётом неотрицательности второго слагаемого имеем при всех $k \geqslant 3$, $k \in \mathbb{N}, s \in [0; T_0)$

$$\left(1 + \frac{1}{T_0 - s}\cos^2\frac{1}{T_0 - s}\right)^k \geqslant \frac{k(k-1)(k-2)}{6} \frac{1}{(T_0 - s)^3}\cos^6\frac{1}{T_0 - s},$$
(15)

откуда при всех $t \in [0; T_0)$

$$\int_0^t \left(1 + \frac{1}{T_0 - s} \cos^2 \frac{1}{T_0 - s}\right)^k ds \geqslant \frac{k(k - 1)(k - 2)}{6} \int_0^t \frac{1}{(T_0 - s)^3} \cos^6 \frac{1}{T_0 - s} ds. \tag{16}$$

Вычислим интеграл в правой части последней формулы:

$$\int_{0}^{t} \frac{1}{(T_{0} - s)^{3}} \cos^{6} \frac{1}{T_{0} - s} ds = \left\{ y = \frac{1}{T_{0} - s} \right\} = \int_{\frac{1}{T_{0}}}^{\frac{1}{T_{0} - t}} y \cos^{6} y \, dy =$$

$$= \frac{5}{32} y^{2} + \frac{15}{32} \left(\frac{y \sin 2y}{2} + \frac{\cos 2y}{4} \right) + \frac{6}{32} \left(\frac{y \sin 4y}{4} + \frac{\cos 4y}{16} \right) + \frac{1}{32} \left(\frac{y \sin 6y}{6} + \frac{\cos 6y}{36} \right) \Big|_{\frac{1}{T_{0}}}^{\frac{1}{T_{0} - t}} =$$

$$= \frac{5}{32} \frac{1}{(T_{0} - t)^{2}} + O\left(\frac{1}{T_{0} - t}\right) \quad \text{при} \quad t \to T_{0} - 0. \quad (17)$$

Из (13), (15)—(17) получаем

$$\begin{split} 0\leqslant K(t)\leqslant \frac{6}{k(k-1)(k-2)}\frac{\frac{1}{T_0-t}\cos^2\frac{1}{T_0-t}}{\frac{5}{32}\frac{1}{(T_0-t)^2}+O\left(\frac{1}{T_0-t}\right)}=\\ &=\frac{32\cdot 6}{5k(k-1)(k-2)}\frac{\cos^2\frac{1}{T_0-t}}{\frac{1}{T_0-t}+O(1)}\to +0\quad\text{при}\quad t\to T_0-0. \end{split}$$

Это и доказывает предельное соотношение (14) в случае выбора, например, k=3.

Итак, уравнение имеет вид

$$u(t) = 1 + \int_0^t K(t)(u(s))^3 ds,$$

где

$$K(t) = \begin{cases} \frac{\frac{1}{T_0 - t} \cos^2 \frac{1}{T_0 - t}}{\int_0^t \left(1 + \frac{1}{T_0 - s} \cos^2 \frac{1}{T_0 - s}\right)^3 ds}, & t \in (0; T_0), \\ 0, & t \in \{0\} \cup [T_0; +\infty), \end{cases}$$

 $T_0 = \frac{2}{\pi}$, а соответствующее решение —

$$u(t) = 1 + \frac{1}{T_0 - t} \cos^2 \frac{1}{T_0 - t}.$$

Замечание 7. К данному результатату примыкает результат работы

V. Komornik, P. Martinez, M. Pierre, J. Vanconsenoble. "Blow-up" of bounded solutions of differential equations.

где показано, что непродолжаемое решение задачи Коши для автономного абстрактного дифференциального уравнения

$$u' = f(u)$$

с локально липшицевой правой частью f(u) в произвольном бесконечномерном банаховом пространстве B может (в отличие от случаев (3) и (4)) быть даже ограниченным, если f(u), являясь локально липшиц-непрерывной, не является ограниченной на каждом ограниченном подмножестве пространства B.

Замечание 8. Важно различать ограниченно липшиц-непрерывные и локально липшиц-непрерывные функции. Последние — это такие, что для любой точки найдётся окрестность, в которой такая функция липшиц-непрерывна. В бесконечномерном банаховом пространстве эти условия не равносильны.

§ 11. Теорема Пеано

Теорема 2. (**Пеано.**) Рассмотрим дифференциальное уравнение относительно скалярной функции u(t)

$$u' = f(t, u). (18)$$

Если правая часть f(t,u) непрерывна в некоторой ограниченной замкнутой области G, то через каждую внутреннюю точку (t_0,u_0) этой области проходит хотя бы одна интегральная кривая этого уравнения.

Легко видеть, что единственность не гарантируется этой теоремой не случайно: достаточно рассмотреть задачу Коши

$$\begin{cases} u' = 3u^{\frac{2}{3}}, \\ u(0) = 0. \end{cases}$$
 (19)

Задача (19) имеет как тривиальное решение u=0, так и решение $u=t^3$. Кроме того, при любом t_0 функция $(t-t_0)^3$ также является решением уравнения задачи (19), причём

$$\left. \frac{d}{dt}(t-t_0)^3 \right|_{t=t_0} = 0.$$

Следовательно, решения u=0 и $u=(t-t_0)^3$ можно гладко сшить и получить (при произвольном $t_0>0$) решение

$$u(t) = \begin{cases} 0, & t \in [0, t_0), \\ (t - t_0)^3, & t \in [t_0, +\infty), \end{cases}$$
 (20)

также являющееся решением задачи (19). Итак, задача (19) имеет не два, а бесконечно много решений, определённых на всей полупрямой $t \ge 0$.

Оказывается, существуют и более «патологические» примеры. Не будем приводить их ввиду громоздкости построения, но отметим лишь, что существует такая функция f(t,u), непрерывная на всей плокости (t,u), что для любой пары (t_0,u_0) задача Коши

$$\begin{cases} u' = f(t, u), \\ u(0) = u_0 \end{cases}$$

имеет более одного решения на любом отрезке $[t_0, t_0 + \varepsilon]$. (Задача (19) обладает таким свойством лишь при $u_0 = 0$.)

Не случайно мы сформулировали теорему Пеано для скалярной функции. Дело в том, что теорема Пеано верна только для конечномерных линейных пространств. Напротив, в любом бесконечномерномерном банаховом пространстве задача (18) может не иметь ни одного (даже локального по времени) решения. Этот результат был получен в

А. Н. Годунов, О теореме Пеано в банаховых пространствах. Функц. анализ и его прил., 1975, том 9, выпуск 1, 59—60.

Задачи для самостоятельного решения

- 1. Опираясь на задачу (19) (или подобные ей), построить задачу Коши со следующими свойствами:
- 1) её тривиальное решение u = 0 существует на полупрямой;
- (2) для любого T>0 существует нетривиальное решение на промежутке (0,T) (возможно, продолжаемое), (3) никакое её нетривиальное решение не продолжаемо на всю полупрямую.
- 2^* . Привести пример локально липшиц-непрерывной, но не ограниченно липшиц-непрерывной функции.