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The Homework Assignments book is intended for 5th-year stu-

dents of the Physics Department of Moscow State University �

students of the course �Theoretical Basics of Big Data Analytics�.

This course involves completing homework assignments, which, in

essence, are theoretical (research) or practical (software) projects.

The manual contains conditions and detailed guidelines for com-

pleting the main stages of these assignments. The material corre-

sponds to the course of lectures on the special course �Theoretical

Foundations of Big Data Analytics�.
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1 Canonical Information for Sample Mean

and Covariance Matrix

Let (x1, x2, . . . , xn) be a sequence of column vectors:

xi =


x1i
...

xmi

 , i = 1, . . . , n.

In statistics one often has to compute the sample mean vector

X =
1

n

n∑
i=1

xi

and the sample covariance matrix

V =
1

n− 1

n∑
i=1

(xi −X)(xi −X)T ,

where xT is the transpose of x.

What canonical form of information would you suggest to rep-

resent the sequence (x1, x2, . . . , xn) in order to compute the sample

mean vector and the sample covariance matrix?

Verify that all the �desirable� properties of canonical information

are satis�ed:

a) Existence and Uniqueness. Can any sequence of raw data

(x1, x2, . . . , xn) be represented by canonical information in a

unique way? Does this representation depend on the order of

vectors xi in the data sequence?

b) Completeness. Canonical information should retain ALL

the information which was present in the original raw data.

Speci�cally, an algorithm applied to canonical information
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(deployment phase) should produce the same results as the

original algorithm applied to the original raw data.

Does your canonical representation of data conform this re-

quirement? How would you compute X and V using only

collected canonical information?

c) Elementary canonical information. Does canonical informa-

tion exist for a single observation?

d) Empty canonical information. Does canonical information

exist for an empty sequence of observations?

e) Combination (or composition) operation. How would you

de�ne composition of pieces of canonical information? Does

it satisfy axioms for a commutative monoid? (commutativity,

associativity, neutral element)

f) Update operation. How is canonical information updated

when a new observation vector x arrives?

g) Compactness and E�ciency. What can you say about

compactness (or minimality) and e�ciency of your canonical

form of information in terms of storage requirements and com-

plexity of combination, update, and deployment operations?

h) What is the minimum number of observations n for which

X and V are de�ned?
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2 MapReduce Distributed Computing Model

Write a program simulating the MapReduce distributed comput-

ing model for constructing a sample mean and sample covariance

matrix from homework 1.

Speci�cally, let (x1, x2, . . . , xn) be a sequence of column vectors:

xi =


x1i
...

xmi

 , i = 1, . . . , n.

Write a MapReduce-style program which computes the sample

mean vector

X =
1

n

n∑
i=1

xi

and the sample covariance matrix

V =
1

n− 1

n∑
i=1

(xi −X)(xi −X)T ,

where xT is the transpose of the column vector x.

The key part is to design three functions:

a) The function which extracts canonical information from a

dataset. This function will be applied to the list of datasets

in the Map phase.

b) The function which combines two pieces of canonical infor-

mation into one. It will be used to combine all the pieces of

canonical information into one in the Reduce phase.

c) The function which comutes the result from combined canan-

ical information.

Suggestions:
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� Use the canonical information representation designed in the

homework 1.

� As a guiding example, you can use the code �Mean_MR.py�,

which illustrates the calculation of the arithmetic mean for a

set of numbers.

� To generate a set of random columns with a given average and

covariance matrix, you can use the code from �MV_ArGen.py�.
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3 Linear Regression

Write a program which illustrates simple linear regression (or a

more general variant of linear regression) and implements accumu-

lation of canonical information.

a) For some �xed parameters a and b (or, in a more general case,

a1, . . . , am) generate a sequence of �observations� (xi, yi):

yi = f(xi) + εi,

where

f(x) = a+ bx or f(x) = a1 + a2x+ a3x
2 + · · ·+ amx

m−1

εi are i.i.d. with zero mean and Eε2i = σ2. Values xi can be

generated randomly with some mean and variance.

b) Accumulate canonical information, i.e., at each step, when a

new observation (xi, yi) is produced, update canonical infor-

mation.

c) Illustrate the real function f(x) and its estimate f̂(x).

d) Illustrate Var(f̂(x)), assuming that σ2 is known.

e) Illustrate
̂

Var(f̂(x)), assuming that σ2 is NOT known.

In your report present the source code and a few (around 3) nice

graphs showing estimations for �small�, �intermediate�, and �large�

number of observations.
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Formulas & example

yi = fa(xi) + εi = a1f1(xi) + · · ·+ amfm(xi) + εi

or

yi = Fxi
a+ εi,

where

Fx =
[
f1(x) f2(x) · · · fm(x)

]
.

Function used in the demo � polynomial:

yi = 1 + 1 · xi − 1 · x2i + 0.2 · x3i + εi

,

Fx =
[
1 x x2 x3

]
, m = 4, a =


1

1

−1

0.2


Data: (xi, yi), i = 1, . . . , n

Canonical information: (T, v, V, n)

Elementary information: (Ti, vi, Vi, ni)

ni = 1, Vi = y2i , vi = FT
xi

· yi =


f1(xi) yi

...

f4(xi) yi

 ,

Ti = FT
xi
·Fxi =


f1(xi)

2 f1(xi) f2(xi) · · · f1(xi) f4(xi)
...

...
. . .

...

f4(xi) f1(xi) f4(xi) f2(xi) · · · f4(xi)
2


Update:

(T, v, V, n) + (Ti, vi, Vi, ni) = (T + Ti, v + vi, V + Vi, n+ ni)
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Estimate f(x):

(T, v, V, n) ∗ x 7→

f̂(x) = FxT
−1v,

Var(f̂(x)) = σ2FxT
−1FT

x ,

̂
Var(f̂(x)) =

V − vTT−1v

n−m
· FxT

−1FT
x .

Part of the code in MatLab

in = in + Info([x,y]); % Update: Elem. Info & Combine

est = in * xv; % Apply Info

Example of an illustration

0 0.5 1 1.5 2 2.5 3 3.5 4

-2

-1

0

1

2

3

4

n = 10

Data

f

est. f

Error

est. Error
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4 Simple Linear Estimation Problem and

Canonical Information

Consider the following series of measurements of the unknown value

x:

yi = aix+ εi, i = 1, . . . , n,

where yi are measurement results, ai are known coe�cients, and εi

represent random error of measurement and are independent iden-

tically distributed (i.i.d.) with zero mean and variance σ2:

Eεi = 0, Eε2i = σ2, i = 1, . . . , n,

a) Construct an optimal, linear in y1, . . . , yn, estimate x̂ for x?

x̂ =?

b) Is it a biased or an unbiased estimate?

c) What is its variance (expressed through σ2)? Var(x̂) =?

d) How would you estimate σ2 if it is unknown? σ̂2 =?

e) What would you use as an estimate for Var(x̂) if σ2 is un-

known? V̂ar(x̂) =?

f) Suppose that the variance σ2 is known. What �canonical in-

formation� would be su�cient to extract from the series of

records

(y1, a1), . . . , (yn, an), i = 1, . . . , n

in order to compute the estimate x̂, and its variance Var(x̂)?

g) Suppose that the variance σ2 is NOT known. What �canonical

information� would be su�cient to extract from the series of

observations in order to compute x̂, σ̂2, and V̂ar(x̂)?
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h) How should we update such �information� when a new record

(yn+1, an+1) arrives?

i) How should we �combine� (merge) two pieces of �canonical

information�?

Please do not try to use general formulas, but develop as much

as possible from scratch.
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5 Optimal Linear Estimation Examples

1. (This problem is a particular case of Problem 3. So, if you

feel con�dent you can skip it and then just extract answers

from Problem 3).

Consider the following set of measurements of the unknown

variables x1 and x2:

y1 = x1 + x2 + ν1,

y2 = x1 − x2 + ν2,

y3 = −x1 + x2 + ν3,

where yi are measurement results, and νi represent random

error of measurement and are independent identically dis-

tributed (i.i.d.) with zero mean and variance σ2:

Eνi = 0, Eε2i = σ2, i = 1, 2, 3.

(a) Write it in matrix form

y = Ax+ ν

and write the matrices A and S = Var(ν).

(b) Find the variance matrix Var(x̂) for the optimal linear

estimate of x and variances of x̂1 and x̂2.

2. Consider two measurements of one unknown variable x with

the correlated noise. Speci�cally, suppose that

y1 = x+ ν1,

y2 = x+ ν2,
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where

ν1 = ε1 + ε0,

ν2 = ε2 + ε0,

ε1, ε2 ∼ (0, σ2
1), ε0 ∼ (0, σ2

0),

σ2
0 + σ2

1 = σ2, r =
σ2
0

σ2
0 + σ2

1

.

(a) Same as in 1.

(b) Same as in 1.

(c) Analyze how the variance of x̂ depends on the correlation

parameter r for 0 ≤ r ≤ 1. Is higher correlation good or

bad for estimation in this example? A graph might be

helpful. How would you explain such behavior?

3. Consider the same measurement scheme as in Problem 1, but

with the correlated noise. Speci�cally, suppose that

ν1 = ε1 + ε0,

ν2 = ε2 + ε0,

ν3 = ε3 + ε0,

ε1, ε2, ε3 ∼ (0, σ2
1), ε0 ∼ (0, σ2

0),

σ2
0 + σ2

1 = σ2, r =
σ2
0

σ2
0 + σ2

1

.

(a) Same as in 1.

(b) Same as in 1.
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(c) Analyze how the variancees of x̂1 and x̂2 depend on the

correlation parameter r for 0 ≤ r ≤ 1 when σ2 = const.

Is higher correlation good or bad for estimation in this

example? A graph might be helpful. How would you

explain such behavior?

Feel free to use symbolic packages (e.g., Maple, Symbolic Toolbox

in MatLab,...).
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6 Canonical Information from Multiple

Observations & Prior Information

In this homework you are asked to write a program which would im-

plement and demonstrate various aspects of optimal linear estima-

tion. The underlying process imitates a simple signal measurement

experiment.

Items 1 and 2 below describe in more details certain suggestions

for your program. The problem itself (in fact, four closely related

ones) is formulated in item 3.

1. Measurement Simulation (see sample code).

(a) Choose some pro�le x or generate it randomly:

i. Generate random �white noise� µ ∼ (0, I), i.e., µi

are i.i.d. with Eµi = 0 and Var(µ)i = 1.

ii. �Smooth� it with some matrix B.

iii. Then x = Bµ ∼ (0, F ), where F = BBT . Use this x

(one and the same) in all your numeric simulations.

(b) Create matrix A (see sample code).

(c) Simulate a measurement y = Ax+ ν.

2. Estimation: Construct an optimal linear estimate x̂ and the

variance matrix Q = Var(x̂− x). Show on the same graph:

(a) The original signal x (a curve with components xi),

(b) Its estimate x̂ (a curve with components x̂i),

(c) Standard deviations for the estimates x̂i (=
√
Var(x̂i − xi) =√

Qii). It can be illustrated by showing the correspond-

ing �corridor� around x̂i).

16



3. Illustrate estimation (see item 2) in di�erent settings:

(a) Single measurement (y,A, S).

i. Transform (y,A, S) to canonical form (T, v).

ii. Construct the estimate, based on the canonical in-

formation.

(b) Single measurement (y,A, S) with the prior information

x ∼ (0, F ):

i. Transform the prior information to canonical form.

ii. Transform the measurement to canonical form.

iii. Combine the pieces of canonical information.

iv. Construct the estimate, based on the combined canon-

ical information.

(c) Many measurements (yj , Aj , Sj), no the prior informa-

tion.

i. Simulate a sequence of measurements of the same

signal x, but with di�ering matrices Aj (and, possi-

bly, Sj).

ii. Extract canonical information from each measure-

ment.

iii. Combine pieces of canonical information.

iv. Construct the estimate, based on the combined canon-

ical information.

(d) Many measurements (yj , Aj , Sj), now with the prior in-

formation x ∼ (0, F ). Same steps as in item (c).

i. Extract canonical information from the prior infor-

mation.
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ii. Simulate a sequence of measurements of the same

signal x, but with di�ering matrices Aj (and, possi-

bly, Sj).

iii. Extract canonical information from each measure-

ment.

iv. Combine the pieces of canonical information.

v. Construct the estimate, based on the combined canon-

ical information.
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7 Calibration Problem

In this assignment you will implement and demonstrate optimal

calibration for a linear estimation. The underlying process imitates

a simple signal measurement experiment and is heavily based on

Homework 6. Here are suggested phases of the project.

1. Measurement Simulation:

(a) Randomly generate some �unknown� pro�le x ∼ (0, F ).

(b) Create a matrix A.

(c) Simulate a measurement

y = Ax+ ν, ν ∼ (0, σ2I).

2. Calibration (assuming that A is unknown):

(a) Randomly generate calibration signals φk, k = 1, . . . ,K

in the same way as you generated x.

(b) Simulate calibration measurements

ψk = Aφk + νk.

(c) Collect canonical calibration information (G,H).

(d) Compute A0 (an estimate of A) and J .

3. Using your simulated observation y construct an optimal lin-

ear estimate x̂ and the variance matrix Var(x̂− x). Show on

the same graph:

(a) The original signal x (a curve with components xi),

(b) Its estimate x̂ (a curve with components x̂i),
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(c) Standard deviations for the estimates x̂i√
E(x̂i − xi)2 =

√
Var(x̂− x)ii =

√
Qii

can be illustrated by showing the corresponding �corri-

dor� around x̂i).

4. Illustrate estimation (Phase 3) when you not only increase

the number of calibration measurements K but also measure

the original signal x N times:

(a) SimulateN measurements yn = Ax+νn for n = 1, . . . , N

and collect the appropriate information.

(b) Simulate K calibration measurements, collect canonical

calibration information, and compute A0 and J .

(c) Using these two types of information construct and show

(as in Phase 3) an optimal linear estimate x̂ and its pre-

cision.

(d) Using these two types of information construct and show

(as in Phase 3) an optimal linear estimate x̂ and its pre-

cision.

(e) Do the above for several cases with numbers N and K

�small� �medium�, and �large�. Reminder: N and K are

�balanced� when K ≈ N ·M , where M is the dimension

of the unknown x.

(f) (Optional) Show how estimation precision depends on N

and K. To do that you could show total estimation error

E||x̂− x||2 = trQ

as a function of N and K. To illustrate a function of

two variables you can show it, e.g., as a surface or as
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a pseudocolor image. It might be interesting to indi-

cate contour lines (curves along which the function has

constant values).
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8 Multicriteria Optimization:

Trade-o� between Systematic and Ran-

dom Errors

In this homework you are asked to write a program which would

implement and demonstrate separate treatment of systematic and

random errors in linear estimation. The underlying process imitates

a simple signal measurement experiment and is heavily based on

Homework 6. Here are suggested phases of the project.

1. Constuct Pareto sets (curves) for di�erent information sce-

narios:

(a) Very little information (small and even singular T ). Sin-

gle measurement with a short (truncated) matrix A (the

number of observations is less than the number of un-

knowns).

(b) Moderate information. Around 4 measurements with

normal A.

(c) More information. Around 16 measurements with nor-

mal A.

and show them on the same graph.

2. Illustrate estimation results for several ( 6) interesting cases:

(a) No random noise suppression (λ ≈ 0).

(b) Moderate or strong noise suppression.

for di�erent information scenarios.

3. For each estimation illustration show on the same graph:
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(a) The original signal x (a curve with components xi),

(b) Its estimate x̂ (a curve with components x̂i),

(c) Standard deviations for the random (additive) error
√
Hii.

It can be illustrated by showing the corresponding �cor-

ridor� around x̂i).

(d) Illustration of systematic (multiplicative) error
√
Gii. Per-

haps on a separate graph.

Instead of the original parametrization by λ ∈ [0,+∞] it might

be convenient to use λ = t
1−t where t ∈ [0, 1].
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9 The Smallest Information Space

Let {x1, ..., xn} ∈ R+ be a multiset of reals. For the processing

p : R+ → R ∪ {/} which computes the spread of points:

p({x1, ..., xn}) =


max
0≤i≤n

xi − min
0≤i≤n

xi n > 0

/ n = 0

�nd a candidate for the smallest information space and prove that

it really is the smallest.
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