ЛЕКЦИЯ 3Б—4Г

Полнота пространств Лебега

Мы рассматриваем пространства $L^p(\Omega)$, где Ω есть некоторое измеримое пространство (конечной или бесконечной, но σ -конечной меры), $p \in [1; +\infty]$.

Теорема. Пространства $L^p(\Omega)$ полны.

Доказательство.

Пусть дана последовательность $\{f_n\}$, фундаментальная по норме пространства $L^p(\Omega)$. Мы докажем, что существует элемент $f \in L^p(\Omega)$ такой, что $f_n \to f$ в $L^p(\Omega)$.

I. p = 1. Прежде всего нам следует начать с выбора представителей элементов f_n . Сделаем этот выбор произвольным образом. Из дальнейшего будет ясно, что результат не зависит от конкретного выбора. Теперь будем считать, что $f_n(x)$ суть не что иное, как выбранные представители элементов f_n . По определению фундаментальной последовательности имеем:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \in \mathbb{N} \, \forall n, m \geqslant N(\varepsilon) \, \|f_n(x) - f_m(x)\|_1 < \varepsilon. \tag{1}$$

Положим $N_0 = 0$. Далее при каждом $k \in \mathbb{N}$ положим $N_k = \max\left(N\left(\frac{1}{2^k}\right), N_{k-1} + 1\right)$, где $N\left(\frac{1}{2^k}\right)$ понимается в смысле (1). Нетрудно видеть, что при каждом $k \in \mathbb{N}$

$$f_{N_k} = f_{N_0} + (f_{N_1} - f_{N_0}) + \ldots + (f_{N_k} - f_{N_{k-1}}).$$
(2)

С другой стороны, в силу выбора N_k имеем при всех $k \in \mathbb{N}$

$$||f_{N_0}||_1 + ||f_{N_1} - f_{N_0}||_1 + \ldots + ||f_{N_k} - f_{N_{k-1}}||_1 \le ||f_{N_0}||_1 + ||f_{N_1} - f_{N_0}||_1 + 1.$$

Тогда по теореме Беппо Леви ряд

$$|f_{N_0}| + |f_{N_1} - f_{N_0}| + \ldots + |f_{N_k} - f_{N_{k-1}}| + \ldots$$

сходится почти всюду на Ω к некоторой функции $\tilde{f}(x)$, причём $\int_{\Omega} \tilde{f}(x) \, d\mu \leqslant C$. Следовательно, ряд

$$f_{N_0} + (f_{N_1} - f_{N_0}) + \ldots + (f_{N_k} - f_{N_{k-1}}) + \ldots$$
 (3)

тоже сходится почти всюду на Ω . Обозначив сумму последнего ряда через f(x), с учётом (2) мы можем написать, что

$$f(x) = \lim_{k \to \infty} f_{N_k}(x),\tag{4}$$

где предел существует почти всюду. (В остальных точках доопределим функцию f(x) нулём.) При этом в силу очевидной оценки $|f(x)| \leqslant \tilde{f}(x)$ и свойств интеграла Лебега получаем, что $\int_{\Omega} |f(x)| \, d\mu \leqslant C$ и, тем самым, $f(x) \in L^1(\Omega)$.

Итак, мы построили подпоследовательность $\{f_{N_k}\}$ исходной последовательности $\{f_n\}$, сходящуюся почти всюду к некоторой функции $f(x) \in L^1(\Omega)$. Теперь наша задача показать,

что $f_n \to f$ по норме пространства $L^1(\Omega)$. Очевидно, достаточно доказать лишь, что $f_{N_k} \to f$ в $L^1(\Omega)$, поскольку для фундаментальной последовательности сходимость некоторой её подпоследовательности гарантирует сходимость всех последовательности к тому же пределу.

Заметим, что в силу фундаментальности последовательности $\{f_n\}$, а следовательно, и её подпоследовательности $\{f_{N_k}\}$ верно утверждение

$$\forall \varepsilon > 0 \,\exists K(\varepsilon) \in \mathbb{N} \, \forall m, l \geqslant K(\varepsilon) \, \int_{\Omega} |f_{N_m} - f_{N_l}| \, d\mu < \varepsilon. \tag{5}$$

Воспользовавшись теоремой Фату, перейдём в (5) к пределу при $l \to \infty$. Тогда получим, что при всех $m > K(\varepsilon)$ в смысле (5)

$$\int_{\Omega} |f_{N_m} - f| \, d\mu \leqslant \varepsilon. \tag{6}$$

А это означает не что иное, как сходимость $f_{N_k} \to f$ в $L^1(\Omega)$.

Заметим теперь, что ихсодный выбор представителей элементов f_{N_k} никак не влияет на полученный результат. В самом деле, построенная функция f(x) гвляется представителем некоторого элемента $f \in L^1(\Omega)$, и сходимость последовательности к нему доказана. В силу единственности предела последовательности в метрическом пространстве другого предела у $\{f_n\}$ быть не может.

Итак, для случая p = 1 теорема доказана.

Замечания. 1. В данной ситуации нам было безразлично, конечна или бесконечна мера множества Ω . 2. Попутно мы доказали, что из последовательности, фундаментальной по норме $L^1(\Omega)$, можно извлечь подпоследовательность, сходящуюся почти всюду в Ω .

II. $p=\infty$. По-прежнему начнём с выбора функций $f_n(x)$ — представителей элементов $f_n\in L^\infty(\Omega)$. Далее, вспомним, что если $g\in L^\infty(\Omega)$, то

$$\mu(\{x \in \Omega \mid |g(x)| > ||g||_{\infty}\}) = 0.$$

С учётом этого можно утверждать, что $\mu(\Omega_{nm})=0$, где

$$\Omega_{nm} = \{ x \in \Omega \mid |f_n(x) - f_m(x)| > ||f_n - f_m||_{\infty} \}.$$

Положим теперь $\Omega^* = \Omega \setminus \bigcup_{n,m=1}^{\infty} \Omega_{nm}$. Очевидно, что $\mu\left(\bigcup_{n,m=1}^{\infty} \Omega_{nm}\right) = 0$ и что на множестве Ω^* последовательность функций $\{f_n(x)\}$ равномерно фундаментальна, т. е.

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \in \mathbb{N} \, \forall n, m \geqslant N(\varepsilon), \forall x \in \Omega^* \, |f_n(x) - f_m(x)| < \varepsilon.$$
 (7)

Но из (7) следует равномерная сходимость последовательности функций $\{f_n(x)\}$ на Ω^* , причём для предельной функции f(x) верно: $\sup_{x\in\Omega^*}|f(x)|\leqslant \sup_{n\in N}\|f_n\|_{\infty}$, поэтому $f(x)\in L^{\infty}(\Omega)$. Далее, переходя в (7) к пределу при $n\to\infty$ при фиксированном n, получим:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \in \mathbb{N} \, \forall n > N(\varepsilon), \forall x \in \Omega^* \, |f_n(x) - f(x)| \leq \varepsilon. \tag{8}$$

Поскольку после доопределения функции f(x) на $\Omega \setminus \Omega^*$ произвольным образом условие (8) не нарушается, мы получаем, что $f_n \to f$ в $L^{\infty}(\Omega)$.

Осталось лишь заметить, что любой другой выбор представителей не повлияет на результат. Теперь теорема доказана и для случая $p=\infty$.

III. $p \in (1; +\infty)$. В этом случае, в отличие от предыдущих, придётся рассмотреть отдельно множества Ω конечной и бесконечной меры.

А. $\mu(\Omega) < +\infty$. Тогда для всех $g \in L^p(\Omega)$ имеет место неравенство

$$\int_{\Omega} |g| \, d\mu = \int_{\Omega} |g| \cdot 1 \, d\mu \leqslant \|g\|_{p} \cdot \left(\int_{\Omega} 1 \, d\mu \right)^{\frac{1}{p'}} = \|g\|_{p} \cdot (\mu(\Omega))^{\frac{1}{p'}},$$

где $\frac{1}{p} + \frac{1}{p'} = 1$. Следовательно, все элементы $f_n \in L^p(\Omega)$ принадлежат также пространству $L^1(\Omega)$ и, более того, из фундаментальности последовательности $\{f_n\}$ по норме пространства $L^p(\Omega)$ следует её фундаментельность по норме $L^1(\Omega)$. Поэтому (как и прежде, начав с выбора представителей), в силу доказанного в I мы получим функцию $f(x) \in L^1(\Omega)$ такую, что $||f_n - f||_1 \to 0$.

Заметим теперь, что полученная функция принадлежит также пространству $L^p(\Omega)$. Действительно, поскольку фундаментальная последовательность ограничена, то для $C \equiv \sup_{n \in \mathbb{N}} \|f_n\|^p \geqslant 0$ имеем

$$\int_{\Omega} |f_{N_k}|^p \, d\mu \leqslant C,$$

где $\{f_{N_k}\}$ — почти всюду сходящаяся к f подпоследовательность, выбранная из $\{f_n\}$ согласно I. Но тогда по теореме Фату получаем $\int_{\Omega} |f|^p d\mu \leqslant C$, т. е. $f \in L^p(\Omega)$. Осталось лишь доказать, что $\|f_n - f\|_p \to 0$. Пусть дано $\varepsilon > 0$. Тогда в силу фундаментельности последовательности $\{f_{N_k}\}$ получаем, что

$$\forall \varepsilon > 0 \,\exists K(\varepsilon) > 0 \,\,\forall l, m > K(\varepsilon) \,\, \int_{\Omega} |f_{N_l} - f_{N_m}|^p \, d\mu < \varepsilon.$$

Устремляя m к бесконечности, по теореме Фату получаем, что при тех же $l > K(\varepsilon)$ верно неравенство $\int_{\Omega} |f_{N_l} - f|^p d\mu \leqslant \varepsilon$. Поскольку это рассуждение можно провести для произвольного $\varepsilon > 0$, получаем

$$\forall \varepsilon > 0 \,\exists K(\varepsilon) > 0 \,\forall l > K(\varepsilon) \int_{\Omega} |f_{N_l} - f|^p \, d\mu < \varepsilon,$$

т. е. $||f_{N_k} - f||_p \to 0$. Очевидно, вся исходная последовательность также стремится к f в $L^p(\Omega)$.

Б. Пусть $\mu(\Omega) = +\infty$ (но при этом мера на Ω σ -конечна). По определению σ -конечности меры на Ω получаем, что Ω может быть представлено в виде объединения непересекающихся измеримых подмножеств конечной меры:

$$\Omega = \sqcup_{q=1}^{\infty} \Omega_q,$$
 где $\mu(\Omega_q) < +\infty,$ $q \in \mathbb{N}.$

Как обычно, выберем представителей каждого элемента f_n и заметим к тому же, что сужения выбранных функций на каждое из Ω_q измеримы и принадлежат $L^p(\Omega_q)$. Более того, если $K(\varepsilon) \in \mathbb{N}$ таково, что

$$\forall l, m > K(\varepsilon) \int_{\Omega} |f_l - f_m|^p d\mu < \varepsilon,$$

то очевидным образом при всех $l, m > K(\varepsilon)$ (где $K(\varepsilon)$ то же)

$$\forall l, m > K(\varepsilon) \int_{\Omega_q} |f_l - f_m|^p d\mu < \varepsilon.$$

Поэтому согласно пункту A из $\{f_n(x)\}$ можно извлечь подпоследовательность, сходящуюся почти всюду на Ω_1 . Из неё можно извлечь подпоследовательность, сходящуюся почти всюду на Ω_2 . Продолжим этот процесс, а затем с помощью диагонального процесса выберем подпоследовательность $\{f_{n_k}\}$, сходящуюся почти всюду на всех Ω_q , т. е. сходящуюся почти всюду на Ω . Обозначим соответствующую предельную функцию через f(x). Из пункта A следует, что $\|f_{n_k} - f\|_{L^p(\Omega_q)} \to 0$ при всех $q \in \mathbb{N}$. Тогда имеем при всех $k \in \mathbb{N}$

$$\int_{\Omega} |f_{N_k}|^p d\mu \leqslant \sup_{n \in \mathbb{N}} ||f_n||_{L^p(\Omega)}^p,$$

откуда по теореме Фату

$$\int_{\Omega} |f|^p d\mu \leqslant \sup_{n \in \mathbb{N}} ||f_n||_{L^p(\Omega)}^p,$$

T. e. $f \in L^p(\Omega)$.

Осталось доказать, что $||f_{N_k}-f||_{L^p(\Omega)} \to 0$ (как и прежде, из этого будет следовать аналогичное утверждение для всей последовательности). Но это вытекает из теоремы Фату совершенно аналогично предыдущему случаю. (Действительно, исходная последовательности, а следовательно, и любая её подпоследовательность, фундаментальны в $L^p(\Omega)$.)

3амечание. Мы и для случая σ -конечной меры построили подпоследовательность, сходящуюся почти всюду.

Теорема доказана.

Задачи для самостоятельного решения

1. Пусть $p \in [1; +\infty]$, и пусть последовательность $\{f_n\}_{n=1}^{\infty} \subset L^p(\Omega)$ такова, что

$$\sum_{n=1}^{\infty} ||f_n||_p < +\infty.$$

Доказать, что тогда ряд $\sum_{n=1}^{\infty} f_n$ сходится в $L^p(\Omega)$, ряд из любых представителей этих функций сходится абсолютно почти всюду на Ω и что

$$\left\| \sum_{n=1}^{\infty} f_n \right\|_p \leqslant \sum_{n=1}^{\infty} \|f_n\|_p.$$

 2^* . Доказать сепарабельность 1) $L^p(a;b)$; 2) $L^p(\mathbb{R})$ $(p<+\infty)$.