ГЛАВА 1

Линейные формы

1. Линейные формы и линейные функционалы

1.1. Определение. Линейной формой называется функция f(x), определенная на конечномерном линейном пространстве \mathcal{L} , со значениями в числовом поле \mathbb{K} :

$$f:\mathcal{L}\to\mathbb{K}$$

и обладающая свойством линейности:

$$f(\alpha^1 x_1 + \alpha^2 x_2) = \alpha^1 f(x_1) + \alpha^2 f(x_2)$$
(1.1)

для любых $x_1, x_2 \in \mathcal{L}$ и $\alpha^1, \alpha^2 \in \mathbb{K}$. Линейным функционалом называется функция f(x), определенная на <u>бесконечномерном</u> линейном пространстве \mathcal{L} , со значениями в числовом поле \mathbb{K} , удовлетворяющая свойству линейности (1.1).

- 1.2. Иногда линейные формы называют ковекторами.
- **1.3.** В этом определении мы использовали обозначение f(x) для значения линейной формы f на векторе x линейного пространства $\mathcal L$. Это обозначение не очень удобно в дальнейшем при рассмотрении так называемых обобщенных функций, к которым относится наверное вам уже известная δ -функция Дирака. Поэтому ниже мы будем использовать такое обозначение для результата применения линейной формы f к вектору $x \in \mathcal L$:

$$\langle f, x \rangle$$
. (1.2)

Используемое обозначение $\langle \cdot, \cdot \rangle$ носит название *скобок двойственности* или *угловых скобок*. Не путайте их со скалярным произведением в евклидовом или в унитарном пространствах, которое мы рассмотрим ниже и для которого мы будем использовать другое обозначение (y,x). В обозначении (1.2) свойство линейности (1.1) примет следующий вид:

$$\langle f, \alpha^1 x_1 + \alpha^2 x_2 \rangle = \alpha^1 \langle f, x_1 \rangle + \alpha^2 \langle f, x_2 \rangle$$
 (1.3)

для любых $x_1, x_2 \in \mathcal{L}$ и $\alpha^1, \alpha^2 \in \mathbb{K}$.

1.4. Пример. Пусть $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ — базис в линейном пространстве \mathcal{L} и $x \in \mathcal{L}$. Запишем разложение вектора x по введенному базису:

$$x = x^i \mathbf{e}_i, \tag{1.4}$$

где мы пользуемся обозначением Эйнштейна (по индексу $i\in\overline{1,n}$ предполагается суммирование). Рассмотрим следующую числовую функцию:

$$\langle \mathbf{e}^j, x \rangle \stackrel{def:}{=} x^j,$$
 (1.5)

где x^j-j -ая координата в разложении по базису (1.4) вектора $x\in\mathcal{L}$. Проверим, что \mathbf{e}^j есть линейная форма. Действительно, пусть $x,y\in\mathcal{L}$ и $\alpha,\beta\in\mathbb{K}$ и справедливы следующие разложения по базису $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n\}$ линейного пространства \mathcal{L} :

$$x = x^i \mathbf{e}_i, \quad y = y^i \mathbf{e}_i, \tag{1.6}$$

причем

$$(\alpha x + \beta y)^{i} \mathbf{e}_{i} = \alpha x + \beta y = \alpha x^{i} \mathbf{e}_{i} + \beta y^{i} \mathbf{e}_{i} = (\alpha x^{i} + \beta y^{i}) \mathbf{e}_{i}.$$
 (1.7)

Тогда справедлива следующая цепочка равенств:

$$\langle \mathbf{e}^j, \alpha x + \beta y \rangle = (\alpha x + \beta y)^j = \alpha x^j + \beta y^j = \alpha \langle \mathbf{e}^j, x \rangle + \beta \langle \mathbf{e}^j, y \rangle.$$

Следовательно, \mathbf{e}^j — линейная форма.

1.5. Пример. В пространстве полиномов P^n степени не выше $n \in \mathbb{N}$ с вещественными коэффициентами рассмотрим следующее отображение:

$$\langle f_{t_0}, p \rangle = p(t_0), \tag{1.8}$$

которое сопоставляет произвольному полиному $p(t) \in P^n$ его значение в некоторой фиксированной точке $t_0 \in \mathbb{R}$ является линейной формой.

 \triangle Действительно, пусть $p(t), q(t) \in P^n$ и $\alpha, \beta \in \mathbb{R}$. Тогда справедливы следующие равенства:

$$\langle f_{t_0}, \alpha p + \beta q \rangle = (\alpha p(t) + \beta q(t))(t_0) = \alpha p(t_0) + \beta q(t_0) =$$

$$= \alpha \langle f_{t_0}, p \rangle + \beta \langle f_{t_0}, q \rangle. \quad \boxtimes$$

1.6. Пример. Для любого полинома q(t) отображение, определенное на P^n ,

$$\langle f_q, p \rangle = \int_0^1 q(t)p(t) dt$$

является линейной формой, если определенный интеграл понимается в смысле Римана или Лебега.

 \triangle Действительно, для любых $p(t), g(t) \in P^n$ и $\alpha, \beta \in \mathbb{K}$ справедливы следующие равенства:

$$\langle f_q, \alpha p + \beta g \rangle = \int_0^1 q(t) \left[\alpha p(t) + \beta q(t) \right] dt =$$

$$= \alpha \int_0^1 q(t)p(t) dt + \beta \int_0^1 q(t)g(t) dt = \alpha \langle f_q, p \rangle + \beta \langle f_q, g \rangle. \quad \boxtimes \quad (1.9)$$

1.7. Пример. Прежде всего заметим, что в линейном пространстве полиномов степени не выше $n \in \mathbb{N}$, для которого используется обозначение P^n базисом является следующее семейство полиномов $\{1,t,t^2,\ldots,t^n\}$ (докажите сами!), причем для каждого $n \in \mathbb{N}$ справедливо вложение $P^n \subset \mathbb{C}[0,1]$, где $\mathbb{C}[0,1]$ — пространство непрерывных на отрезке [0,1] вещественных функций. Следовательно, линейное пространство $\mathbb{C}[0,1]$ является бесконечномерным.

Для любой непрерывной функции $g(t) \in \mathbb{C}[0,1]$ определим линейный функционал над линейным пространством $\mathbb{C}[0,1]$:

$$\langle f_g, x(t) \rangle = \int_0^1 g(t)x(t) dt,$$

линейность которого доказывается точно также как и в формуле (1.9).

1.8. Пример. δ **-функция Дирака.** Эта функция определяется следующим образом:

$$\langle \delta, \phi \rangle = \phi(0)$$

и определен этот линейный функционал над линейным пространством основных функций $\mathcal{D}(\mathbb{R}^1)$, построение которого далеко выходит за рамки нашего курса. Заметим, что действие δ -функции на основных функций нельзя записывать в виде интеграла Римана (и даже в виде интеграла Лебега):

$$\langle \delta, \phi \rangle = \int\limits_{-\infty}^{+\infty} \delta(x) \phi(x) \, dx, \quad \delta(x) = \begin{cases} +\infty, & \text{если} \quad x = 0; \\ 0, & \text{если} \quad x \neq 0. \end{cases}$$

Эта запись неверна.

1.9. Определение. Линейные формы f и g называются равными, и пишут f=g, если для всех векторов $x\in\mathcal{L}$ имеет место равенство

$$\langle f, x \rangle = \langle g, x \rangle.$$

1.10. Пример. Показать, что две линейные формы f_1 и f_2 , заданные на линейном пространстве полиномов P^2 степени не выше 2, равенствами

$$\langle f_1, p \rangle = \int_{-1}^{1} g_1(t)p(t) dt, \quad \langle f_2, p \rangle = \int_{-1}^{1} g_2(t)p(t) dt,$$
 (1.10)

совпадают, если $g_1(t) - g_2(t) = 5t^3 - 3t$.

△ Действительно, справедливы следующие равенства:

$$\langle f_1 - f_2, p \rangle = \int_{-1}^{1} [g_1(t) - g_2(t)] p(t) dt = \int_{-1}^{1} [5t^3 - 3t] [a_0 + a_1t + a_2t^2] dt =$$

$$= \int_{-1}^{1} [a_0 5t^3 + a_1 5t^4 + 5a_2t^5 - 3a_0t - 3a_1t^2 - 3a_2t^3] dt =$$

$$= \int_{-1}^{1} [a_1 5t^4 - 3a_1t^2] dt = a_1[2 - 2] = 0,$$

поскольку

$$\int\limits_{-1}^{1}t^{n}\,dt=0$$
 для любого нечетного $n\in\mathbb{N}.$ $oximes$

1.11. Лемма. Всякая линейная форма $f: \mathcal{L} \to \mathbb{K}$ однозначно определяется своими значениями $\langle f, \mathbf{e}_i \rangle$ на векторах базиса $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ линейного пространства \mathcal{L} .

Доказательство. Пусть линейная форма f задана. Тогда однозначно определены ее значения $\langle f, \mathbf{e}_i \rangle$ на элементах базиса. Обратно. Пусть заданы значения формы $\langle f, \mathbf{e}_i \rangle$ на элементах базиса. Рассмотрим разложение элемента $x \in \mathcal{L}$ по базису $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$:

$$x = x^{i} \mathbf{e}_{i} \Rightarrow \langle f, x \rangle = \langle f, x^{i} \mathbf{e}_{i} \rangle = x^{i} \langle f, \mathbf{e}_{i} \rangle.$$

Отсюда вытекает утверждение леммы.

2. Сопряженное линейное пространство

1.12. Определение. Суммой линейных форм f и g называется отображение $h:\mathcal{L}\to\mathbb{K}$, определяемое равенством

$$\langle h,x \rangle \stackrel{def:}{=} \langle f,x \rangle + \langle g,x \rangle$$
 для всех $x \in \mathcal{L}.$

1.13. Определение. Произведением линейной формы f на число $\alpha \in \mathbb{K}$ называется отображение $l: \mathcal{L} \to \mathbb{K}$, для всех векторов $x \in \mathcal{L}$ определяемое равенством

$$\langle l, x \rangle \stackrel{def:}{=} \alpha \langle f, x \rangle.$$

1.14. Лемма. Сумма линейных форм и произведение линейной формы на число являются линейными формами.

Доказательство. Шаг 1. Линейность суммы форм. Пусть $x,y\in\mathcal{L}$ и $\alpha,\beta,\gamma\in\mathbb{K}$ — произвольны и h=f+g. Справедливы следующие равенства:

$$\begin{split} \langle h, \alpha x + \beta y \rangle &= \langle f, \alpha x + \beta y \rangle + \langle g, \alpha x + \beta y \rangle = \\ &= \alpha \langle f, x \rangle + \beta \langle f, y \rangle + \alpha \langle g, x \rangle + \beta \langle g, y \rangle = \\ &= \alpha (\langle f, x \rangle + \langle g, x \rangle) + \beta (\langle f, y \rangle + \langle g, y \rangle) = \alpha \langle h, x \rangle + \beta \langle h, y \rangle. \end{split}$$

Шаг 2. Линейность произведения формы на число. Пусть $l=\gamma f$.

$$\begin{split} \langle l, \alpha x + \beta y \rangle &= \gamma \langle f, \alpha x + \beta y \rangle = \gamma (\alpha \langle f, x \rangle + \beta \langle f, y \rangle) = \\ &= \gamma \alpha \langle f, x \rangle + \gamma \beta \langle f, y \rangle = \alpha \gamma \langle f, x \rangle + \beta \gamma \langle f, y \rangle = \alpha \langle l, x \rangle + \beta \langle l, y \rangle. \end{split}$$

1.15. Определение. Нулевой формой θ^* называется отображение, сопоставляющая любому вектору $x \in \mathcal{L}$ нуль поля $0 \in \mathbb{K}$:

$$\langle \theta^*, x \rangle = 0$$
 для всех $x \in \mathcal{L}$.

1.16. Лемма. Нулевая форма θ^* является линейной.

Доказательство. Пусть $x,y\in\mathcal{L}$ и $\alpha,\beta\in\mathbb{K}$ — произвольны. Тогда справедливы следующие равенства:

$$\langle \theta^*, \alpha x + \beta y \rangle = 0 = \alpha 0 + \beta 0 = \alpha \langle \theta^*, x \rangle + \beta \langle \theta^*, y \rangle.$$

1.17. Теорема. Множество всех линейных форм с введенными законами сложения 1.12 и умножения на числа 1.13 является линейным пространством.

Доказательство. Пусть f,g,h — произвольные линейные формы и $\alpha,\beta\in\mathbb{K}$ — произвольные числа. Проверим все аксиомы линейного пространства.

Шаг 1. Коммутативность сложения. Для всех $x \in \mathcal{L}$ справедливы следующие цепочки равенств:

$$\langle f + g, x \rangle = \langle f, x \rangle + \langle g, x \rangle = \langle g, x \rangle + \langle f, x \rangle = \langle g + f, x \rangle.$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что f+g=g+f.

Шаг 2. Ассоциативность сложения. Для всех $x \in \mathcal{L}$ справедливы следующие цепочки равенств:

$$\langle (f+g)+h,x\rangle = \langle f+g,x\rangle + \langle h,x\rangle = \langle f,x\rangle + \langle g,x\rangle + \langle h,x\rangle =$$
$$= \langle f,x\rangle + \langle g+h,x\rangle = \langle f+(g+h),x\rangle.$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что f+(g+h)=(f+g)+h.

Шаг 3. Нулевая форма. Для всех $x \in \mathcal{L}$ с учетом определения 1.15 справедливы следующие цепочки равенств:

$$\langle f + \theta^*, x \rangle = \langle f, x \rangle + \langle \theta^*, x \rangle = \langle f, x \rangle.$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что $f + \theta^* = f$.

Шаг 4. Существование противоположного элемента. Определим противоположный элемент f' к линейной форме f следующим образом:

$$\langle f', x \rangle \stackrel{def:}{=} -\langle f, x \rangle.$$

Тогда для всех $x \in \mathcal{L}$ справедливы следующие равенства:

$$\langle f + f', x \rangle = \langle f, x \rangle + \langle f', x \rangle = 0 = \langle \theta^*, x \rangle.$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что $f+f'=\theta^*$.

Шаг 5. Свойство $1 \in \mathbb{K}$. Для всех $x \in \mathcal{L}$ с учетом определения 1.15 справедливы следующие цепочки равенств:

$$\langle 1 \cdot f, x \rangle = 1 \langle f, x \rangle = \langle f, x \rangle.$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что $1 \cdot f = f$.

Шаг 6. Ассоциативность умножения на число. Для всех $x \in \mathcal{L}$ с учетом определения 1.15 справедливы следующие цепочки равенств:

$$\langle (\alpha\beta) \cdot f, x \rangle = (\alpha\beta)\langle f, x \rangle = \alpha\langle \beta \cdot f, x \rangle = \langle \alpha \cdot (\beta \cdot f), x \rangle.$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что $(\alpha\beta)f=\alpha(\beta f).$

Шаг 7. Дистрибутивность относительно сложения элементов. Для всех $x \in \mathcal{L}$ с учетом определения 1.15 справедливы следующие цепочки равенств:

$$\begin{split} \langle \alpha \cdot (f+g), x \rangle &= \alpha \langle f+g, x \rangle = \alpha \langle f, x \rangle + \alpha \langle g, x \rangle = \\ &= \langle \alpha \cdot f, x \rangle + \langle \alpha \cdot g, x \rangle = \langle \alpha \cdot f + \alpha \cdot g, x \rangle. \end{split}$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что $\alpha(f+g)=\alpha f+\alpha g.$

Шаг 8. Дистрибутивность относительно сложения чисел. Для всех $x \in \mathcal{L}$ с учетом определения 1.15 справедливы следующие цепочки равенств:

$$\begin{split} \langle (\alpha + \beta) \cdot f, x \rangle &= (\alpha + \beta) \langle f, x \rangle = \alpha \langle f, x \rangle + \beta \langle f, x \rangle = \\ &= \langle \alpha \cdot f, x \rangle + \langle \beta \cdot f, x \rangle = \langle \alpha \cdot f + \beta \cdot f, x \rangle. \end{split}$$

Поэтому в силу определения 1.9 равенства линейных форм приходим к выводу о том, что $(\alpha + \beta)f = \alpha f + \beta f$.

- **1.18.** Определение. Линейное пространство всех линейных форм на линейном пространстве $\mathcal L$ называется сопряженным к $\mathcal L$ линейным пространством и обозначается символом $\mathcal L^*$.
- **1.19. Лемма.** Для произвольных $f\in\mathcal{L}^*,\ x\in\mathcal{L}$ и $\alpha\in\mathbb{K}$ справедливы равенства

$$\langle \alpha f, x \rangle = \alpha \langle f, x \rangle = \langle f, \alpha x \rangle.$$
 (1.11)

Доказательство. Здесь нужно воспользоваться определением умножения линейной формы на числа и линейностью формы $f \in \mathcal{L}^*$. \square

1.20. Теорема. Пусть $\{{\bf e}_1, \dots, {\bf e}_n\}$ — базис в ${\mathcal L}$. Набор форм $\{{\bf e}^1, \dots {\bf e}^n\}$, действующих по правилу

$$\langle \mathbf{e}^j, x \rangle = x^j, \tag{1.12}$$

где $x=x^j\mathbf{e}_j,$ образуют базис сопряженного пространства $\mathcal{L}^*.$

Доказательство. Полнота. Пусть $f \in \mathcal{L}^*$ и $x \in \mathcal{L}$ — произвольны. Тогда с учетом леммы 1.19 справедлива следующая цепочка равенств:

$$\langle f, x \rangle = \langle f, x^j \mathbf{e}_j \rangle = x^j \langle f, \mathbf{e}_j \rangle = \langle \mathbf{e}^j, x \rangle \langle f, \mathbf{e}_j \rangle = \langle \langle f, \mathbf{e}_j \rangle \mathbf{e}^j, x \rangle.$$

Поскольку последнее равенство должно быть выполнено для всех $x \in \mathcal{L}$, то в силу определения 1.9 равенства линейных форм приходим к равенству

$$f = \langle f, \mathbf{e}_j \rangle \mathbf{e}^j,$$

т.е. набор $\{\mathbf{e}^1, \dots \mathbf{e}^n\}$ полон.

Линейная независимость. Прежде всего заметим, что

$$\langle \mathbf{e}^j, \mathbf{e}_i \rangle = \delta_i^j,$$

Пусть

$$\alpha_j \mathbf{e}^j = \theta^*. \tag{1.13}$$

Применим обе части равенства (1.13) к ${f e}_i$ и получим следующие равенства:

$$\alpha_i = \alpha_j \delta_i^j = \alpha_j \langle \mathbf{e}^j, \mathbf{e}_i \rangle = \langle \alpha_j \mathbf{e}^j, \mathbf{e}_i \rangle = 0$$
 для всех $i = \overline{1, n}$.

Следовательно, набор $\{{\bf e}^1,\dots {\bf e}^n\}$ является линейно независимым в ${\mathcal L}^*$. Таким образом, с учетом полноты этого семейства ковекторов они образуют базис в ${\mathcal L}^*$.

- **1.21. Следствие.** Справедливо равенство $\dim \mathcal{L}^* = \dim \mathcal{L}$.
- **1.22. Определение.** Построенный в теореме 1.20 базис $\{\mathbf{e}^1,\dots,\mathbf{e}^n\}$ линейного пространства \mathcal{L}^* называется взаимным с базисом $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$.
- **1.23. Лемма.** Пусть $\{{\bf e}^1,\dots,{\bf e}^n\}\in \mathcal{L}^*$ взаимный базис к базису $\{{\bf e}_1,\dots,{\bf e}_n\}\in \mathcal{L}$. Тогда для любого $x\in \mathcal{L}$ справедливо следующее равенство:

$$x = \langle \mathbf{e}^j, x \rangle \mathbf{e}_j. \tag{1.14}$$

Доказательство. Справедлива следующая цепочка равенств:

$$x = x^j \mathbf{e}_j = \langle \mathbf{e}^j, x \rangle \mathbf{e}_j.$$

1.24. Лемма. Взаимный базис $\{\mathbf{e}^1,\dots,\mathbf{e}^n\}$ в \mathcal{L}^* однозначно определяется базисом $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}\in\mathcal{L}$.

Доказательство. Пусть существуют два взаимных базиса $\{{f e}^1,\dots,{f e}^n\}$ и $\{{f f}^1,\dots,{f f}^n\}$ для данного базиса $\{{f e}_1,\dots,{f e}_n\}\in\mathcal{L},$ которые определяются равенствами

$$\langle \mathbf{e}^j, x \rangle = x^j = \langle \mathbf{f}^j, x \rangle$$
 для всех $x \in \mathcal{L}.$

Таким образом,

$$\langle \mathbf{e}^j - \mathbf{f}^j, x \rangle = 0$$
 для всех $x \in \mathcal{L}.$

Значит, из определения 1.9 равенства линейных форм получаем, что

$$\mathbf{e}^j = \mathbf{f}^j$$
 при $j = \overline{1, n}$.

3. Второе сопряженное пространство*

- **1.25.** Данный параграф не входит в основной курс линейной алгебры. Однако, заинтересованному читателю мы предлагаем изучить данный параграф после изучения основного материала курса лекций.
- **1.26.** Определение. Сопряженное к линейному пространству \mathcal{L}^* носит название второго сопряженного пространства и обозначается символом \mathcal{L}^{**} .
- **1.27.** Действие линейной формы из $\hat{x} \in \mathcal{L}^{**}$ на линейном пространстве $\mathcal{L}^* \ni f$ мы будем обозначать следующим образом:

$$\langle \hat{x}, f \rangle_*. \tag{1.15}$$

Мы используем такое обозначение, чтобы подчеркнуть, что скобки двойственности $\langle \cdot, \cdot \rangle_*$, вообще говоря, отличается от $\langle \cdot, \cdot \rangle$. И это действительно имеет место в бесконечномерных пространствах. Однако, в конечномерном случае справедливо следующее утверждение:

1.28. Теорема. Справедливо следующее равенство:

$$\langle \hat{x}, f \rangle_* = \langle f, x \rangle$$
 для всех $x \in \mathcal{L}, f \in \mathcal{L}^*,$ (1.16)

где определено линейное взаимно однозначное отображение на все \mathcal{L}^{**}

$$J: \mathcal{L} \to \mathcal{L}^{**}, \tag{1.17}$$

т.е. для каждого $\hat{x} \in \mathcal{L}^{**}$ найдется единственное $x \in \mathcal{L},$ что справедливо равенство

$$\hat{x} = Jx. \tag{1.18}$$

Доказательство. Шаг 1. Пусть $\{{\bf e}_1,\dots,{\bf e}_n\}$ — базис в ${\mathcal L},$ $\{{\bf e}^1,\dots,{\bf e}^n\}$ — взаимный к $\{{\bf e}_1,\dots,{\bf e}_n\}$ базис в ${\mathcal L}^*$ и, наконец, $\{\hat{\bf e}_1,\dots,\hat{\bf e}_n\}$ — взаимный к $\{{\bf e}^1,\dots,{\bf e}^n\}$ базис в ${\mathcal L}^{**}$. По определению 1.22 справедливы следующие равенства:

$$\langle \mathbf{e}^j, x \rangle = x^j, \quad x = x^j \mathbf{e}_j \Rightarrow \langle \mathbf{e}^j, \mathbf{e}_i \rangle = \delta_i^j,$$
 (1.19)

$$\langle \hat{\mathbf{e}}_j, f \rangle_* = f_j, \quad f = f_j \mathbf{e}^j \Rightarrow \langle \hat{\mathbf{e}}_j, \mathbf{e}^i \rangle_* = \delta_j^i, \quad i, j = \overline{1, n}.$$
 (1.20)

В силу леммы 1.31 взаимный базис $\{{\bf e}^1,\dots,{\bf e}^n\}\in \mathcal{L}^*$ однозначно определяется базисом $\{{\bf e}_1,\dots,{\bf e}_n\}\in \mathcal{L},$ а взаимный базис $\{\hat{\bf e}_1,\dots,\hat{\bf e}_n\}\in \mathcal{L}^{**}$ однозначно определяется базисом $\{{\bf e}^1,\dots,{\bf e}^n\}\in \mathcal{L}^*.$ Таким образом, базис $\{\hat{\bf e}_1,\dots,\hat{\bf e}_n\}\in \mathcal{L}^{**}$ однозначно определяется базисом $\{{\bf e}_1,\dots,{\bf e}_n\}\in \mathcal{L}$. Введем следующее отображение:

$$J:~\mathcal{L} o \mathcal{L}^{**},~\langle Jx,f
angle_* \stackrel{def:}{=} \langle f,x
angle$$
 для всех $~x \in \mathcal{L},~f \in \mathcal{L}^{**}.~$ (1.21)

Шаг 2. Прежде всего докажем, что отображение J линейное. Действительно, пусть $x,y\in\mathcal{L},\ f\in\mathcal{L}^*$ и $\alpha,\beta\in\mathbb{K}$ — произвольны. Тогда справедливы следующие равенства:

$$\langle J(\alpha x + \beta y), f \rangle_* = \langle f, \alpha x + \beta y \rangle = \alpha \langle f, x \rangle + \beta \langle f, y \rangle =$$
$$= \alpha \langle Jx, f \rangle_* + \beta \langle Jy, f \rangle_* = \langle \alpha Jx + \beta Jy, f \rangle_*,$$

из которого вытекает, что

$$\langle J(\alpha x + \beta y) - \alpha J x + \beta J y, f \rangle_* = 0$$
 для всех $f \in \mathcal{L}^*$.

Следовательно,

$$J(\alpha x + \beta y) - \alpha Jx + \beta Jy = \theta^* \Leftrightarrow J(\alpha x + \beta y) = \alpha Jx + \beta Jy.$$

Значит, отображение Ј линейное.

Шаг 3. Докажем, что

$$\hat{\mathbf{e}}_i = J\mathbf{e}_i \quad \text{при} \quad i = \overline{1, n}. \tag{1.22}$$

Действительно, в силу (1.19) и (1.20) справедливы следующие равенства:

$$\langle J\mathbf{e}_{i}, \mathbf{e}^{j} \rangle_{*} = \langle \mathbf{e}^{j}, \mathbf{e}_{i} \rangle = \delta_{i}^{j} = \langle \hat{\mathbf{e}}_{i}, \mathbf{e}^{j} \rangle_{*} \Rightarrow \langle J\mathbf{e}_{i} - \hat{\mathbf{e}}_{i}, \mathbf{e}^{j} \rangle = 0 \Rightarrow$$

$$\Rightarrow f_{j} \langle J\mathbf{e}_{i} - \hat{\mathbf{e}}_{i}, \mathbf{e}^{j} \rangle = 0 \Rightarrow \langle J\mathbf{e}_{i} - \hat{\mathbf{e}}_{i}, f_{j}\mathbf{e}^{j} \rangle = 0 \Rightarrow$$

$$\Rightarrow \langle J\mathbf{e}_{i} - \hat{\mathbf{e}}_{i}, f \rangle = 0 \quad \text{для всех} \quad f = f_{j}\mathbf{e}^{j} \in \mathcal{L}^{*} \Rightarrow$$

$$\Rightarrow J\mathbf{e}_{i} - \hat{\mathbf{e}}_{i} = \hat{\theta} \in \mathcal{L}^{**} \Rightarrow \hat{\mathbf{e}}_{i} = J\mathbf{e}_{i}, \quad (1.23)$$

где символом $\hat{\theta}$ мы обозначили нулевой вектор линейного пространства $\mathcal{L}^{**}.$

Шаг 4. Докажем, что $\ker J = \{\theta\}$, где символом $\ker J$ мы обозначили ядро отображения J:

$$\ker J \stackrel{def:}{=} \{ x \in \mathcal{L} : Jx = \hat{\theta} \}.$$

Предположим, что $x \in \ker J$ и $x \neq \theta$. Тогда имеет место разложение

$$x = \alpha^1 \mathbf{e}_1 + \dots + \alpha^n \mathbf{e}_n, \tag{1.24}$$

причем числа $\alpha^1, \dots, \alpha^n$ одновременно в нуль не обращаются. Тогда с учетом (1.22) имеем

$$\alpha^1 \hat{\mathbf{e}}_1 + \dots + \alpha^n \hat{\mathbf{e}}_n = Jx = \hat{\theta}. \tag{1.25}$$

Но поскольку $\{\hat{\mathbf{e}}_1,\dots,\hat{\mathbf{e}}_n\}$ — линейно независимое семейство (базис), то равенство (1.25) возможно тогда и только тогда, когда $\alpha^1=\dots=\alpha^n=0$. что противоречит тому, что числа α^1,\dots,α^n одновременно в нуль не обращаются.

Поэтому отображение $\hat{J}:\mathcal{L}\to\mathcal{L}^{**}$ является инъекцией.

Шаг 5. Докажем, что $\operatorname{im} J = \mathcal{L}^{**}$, где символом $\operatorname{im} J$ мы обозначили образ отображения J:

$$\operatorname{im} J = \{\hat{x} = Jx : x \in \mathcal{L}\}.$$

Пусть $\hat{x}=\hat{x}^j\hat{\mathbf{e}}_j$ — произвольный фиксированный вектор. Тогда в силу (1.22) и линейности отображения J имеем

$$\hat{x} = \hat{x}^j \hat{\mathbf{e}}_j = \hat{x}^j J \mathbf{e}_j = J(\hat{x}^j \mathbf{e}_j) = Jx, \quad x = \hat{x}^j \mathbf{e}_j \in \mathcal{L}.$$
 (1.26)

Таким образом, отображение J *сюръекция*.

Шаг 6. Следовательно, линейное в силу шага 2 отображение $J:\mathcal{L}\to\mathcal{L}^{**}$ является изоморфизмом. Поэтому для любого $\hat{x}\in\mathcal{L}^{**}$ найдется такое $x\in\mathcal{L}$, что для всех $f\in\mathcal{L}$ будут справедливы следующие равенства:

$$\langle \hat{x}, f \rangle_* = \langle Jx, f \rangle_* = \langle f, x \rangle.$$

Теорема доказана полностью.

1.29. Следствие. Для любой $f \in \mathcal{L}^*$ справедливо равенство

$$f = \langle f, \mathbf{e}_i \rangle \mathbf{e}^j, \tag{1.27}$$

где $\{\mathbf{e}^1,\ldots,\mathbf{e}^n\}\in\mathcal{L}^*$ — взаимный базис к базису $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}\in\mathcal{L}$.

Доказательство. Первый вариант. Пусть $\{\mathbf{e}^1,\dots,\mathbf{e}^n\}\in\mathcal{L}^*$ — вза-имный базис к базису $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}\in\mathcal{L}$ и $f\in\mathcal{L}^*$ — произвольная линейная форма, а $\{\hat{\mathbf{e}}_1,\dots,\hat{\mathbf{e}}_n\}\in\mathcal{L}^{**}$ взаимный базис к базису $\{\mathbf{e}^1,\dots,\mathbf{e}^n\}\in\mathcal{L}^*$. Напомню, что тогда справедливы следующие равенства:

$$f = f_j \mathbf{e}^j, \quad \langle \hat{\mathbf{e}}_j, f \rangle_* = f_j.$$
 (1.28)

Тогда в силу равенства (1.16) теоремы 1.28 получаем равенство

$$\langle \hat{\mathbf{e}}_j, f \rangle_* = \langle f, \mathbf{e}_j \rangle.$$
 (1.29)

Стало быть, из (1.28) и (1.29) вытекает равенство (1.27).

Второй вариант. Пусть $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ — базис в \mathcal{L} , а $\{\mathbf{e}^1,\ldots,\mathbf{e}^n\}$ — взаимный базис в \mathcal{L}^* . Тогда справедливы следующие равенства:

$$x = x^j \mathbf{e}_j, \quad \langle \mathbf{e}^j, x \rangle = x^j,$$

$$\langle f, x \rangle = \langle f, x^j \mathbf{e}_j \rangle = x^j \langle f, \mathbf{e}_j \rangle = \langle \mathbf{e}^j, x \rangle \langle f, \mathbf{e}_j \rangle = \langle \langle f, \mathbf{e}_j \rangle \mathbf{e}^j, x \rangle.$$

Поскольку $x \in \mathcal{L}$ — произвольный вектор, то

$$f = \langle f, \mathbf{e}_j \rangle \mathbf{e}^j.$$

4. Линейные формы над P^n

1.30. Над линейным пространством P^n многочленов степени не выше $n \in \mathbb{N}$ рассмотрим формы, определенные следующим образом:

$$D_t^{(s)}: P^n \to \mathbb{R}, \quad \langle D_t^{(s)}, p(t) \rangle := p^{(s)}(0), \quad s \in \mathbb{N} \cup \{0\},$$
 (1.30)

где индексом s мы указываем порядок производной $D_t^{(s)}$ по переменной t.

1.31. Лемма. Формы $D_t^{(s)} \in (P^n)^*$, т.е. являются линейными.

Доказательство. Пусть $p(t), q(t) \in P^n$ и $\alpha, \beta \in \mathbb{R}$ — произвольны. Тогда справедливы следующие равенства:

$$\langle D_t^{(s)}, \alpha p(t) + \beta q(t) \rangle = (\alpha p(t) + \beta q(t))^{(s)}(0) =$$

$$= \alpha p^{(s)}(0) + \beta q^{(s)}(0) = \alpha \langle D_t^{(s)}, p(t) \rangle + \beta \langle D_t^{(s)}, q(t) \rangle.$$

1.32. Лемма. Набор линейных форм $\{D_t^{(0)},\dots,D_t^{(n)}\}$ образуют базис линейного пространства $(P^n)^*$.

Доказательство. Шаг 1. Линейная независимость. Рассмотрим линейную комбинацию этих линейных форм

$$\alpha_0 D_t^{(0)} + \alpha_1 D_t^{(1)} + \dots + \alpha_n D_t^{(n)} = \theta^*. \tag{1.31}$$

Применим обе части этого равенства к полиному t^k при $k \in \mathbb{N} \cup \{0\}$ и получим следующие равенства:

$$\langle \alpha_0 D_t^{(0)} + \alpha_1 D_t^{(1)} + \dots + \alpha_n D_t^{(n)}, t^k \rangle = \langle \theta^*, t^k \rangle = 0,$$
 (1.32)

Справедливы следующие выражения:

$$\langle D_t^{(j)}, t^k \rangle = k(k-1) \cdots (k-j+1) t^{k-j} \Big|_{t=0} = 0, \quad j \in [0, k-1],$$
 (1.33)

$$\langle D_t^{(k)}, t^k \rangle = k!, \tag{1.34}$$

$$\langle D_t^{(j)}, t^k \rangle = 0, \quad j \in [k+1, n].$$
 (1.35)

Таким образом, из (1.32) с учетом (1.33)-(1.35) получим равенство

$$\alpha_k k! = 0$$
 для всех $k \in \overline{0, n}$.

Итак, равенство (1.31) возможно тогда и только тогда, когда все коэффициенты равны нулю, т.е. семейство линейных форм $\{D_t^{(0)},\dots,D_t^{(n)}\}\in (P^n)^*$ линейно независимо. Шаг 2. Базис. Из следствия 1.21 вытекает, что

$$\dim P^n = \dim(P^n)^*.$$

При этом, как нам уже известно, $\dim P^n=n+1$. Но линейно независимый набор $D_t^{(0)},\dots,D_t^{(n)}$ состоит из n+1 элементов, т.е. этот набор образует базис в $(P^n)^*$.

1.33. Лемма. Набор линейных форм $\{D_t^{(0)},\dots,D_t^{(n)}\}$ является взачимным базисом в $(P^n)^*$ к базису $\{1,t,t^2/2,\dots,t^n/n!\}$ линейного пространства P^n .

Доказательство. Шаг 1. Линейная независимость. Прежде всего докажем, что набор $\{1,t,t^2/2,\ldots,t^n/n!\}$ образует базис линейного пространства P^n . Действительно, рассмотрим линейную комбинацию

$$\alpha_0 + \alpha_1 t + \alpha_2 \frac{t^2}{2!} + \dots + \alpha_n \frac{t^n}{n!} = \theta.$$
 (1.36)

Из этого равенства при t=0 получим равенство $\alpha_0=0$. Дифференцируя это равенство в точке t=0 получим $\alpha_1=0$. Продолжая дифференцировать, мы получим в итоге равенства $\alpha_0=\alpha_1=\cdots=\alpha_n=0$. Итак, набор $\{1,t,t^2/2,\ldots,t^n/n!\}$ образует линейно независимое семейство в линейном пространстве P^n .

Шаг 2. Полнота. Пусть $p(t) \in P^n$. Справедливы следующие равенства:

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n =$$

$$= a_0 1 + a_1 \frac{t}{1} + a_2 2! \frac{t^2}{2!} + \dots + a_n n! \frac{t^n}{n!} \quad (1.37)$$

Из равенства (1.37) вытекает, что набор $\{1,t,t^2/2,\ldots,t^n/n!\}$ полон в P^n . Таким образом, из первых двух шагов данного доказательства вытекает, что набор $\{1,t,t^2/2,\ldots,t^n/n!\}$ образует базис в P^n .

Шаг 3. Взаимный базис. С учетом равенств (1.33)–(1.35) мы приходим к следующему выражению:

$$\left\langle D_t^{(j)}, p(t) \right\rangle = \left\langle D_t^{(k)}, a_k \frac{t^k}{k!} \right\rangle = a_k,$$
 (1.38)

где δ^{jk} — символ Кронекера и

$$p(t) = a_0 + a_1 t + a_2 \frac{t^2}{2!} + \dots + a_n \frac{t^n}{n!}$$

и в частности,

$$\left\langle D_t^{(j)}, \frac{t^k}{k!} \right\rangle = \delta^{jk}.$$

Отсюда и в силу результата леммы 1.32 приходим к выводу о том, что набор $\{D_t^{(0)},\dots,D_t^{(n)}\}$ — это взаимный базис в $(P^n)^*$ к базису $\{1,t,t^2/2,\dots,t^n/n!\}$ линейного пространства P^n .

- **1.34.** Можно получить разложение полинома $p(t) \in P^n$ не пользуясь формулой Тейлора, а только фактом, что базис $\{D_t^{(0)},\dots,D_t^{(n)}\}\subset (P^n)^*$ является взаимным к базису $\{1,t,t^2/2,\dots,t^n/n!\}$ линейного пространства P^n . Действительно, справедлива
- **1.35. Лемма.** Всякий полином $p(t) \in P^n$ разлагается по базису $\{1,t,t^2/2,\ldots,t^n/n!\}$ согласно формуле

$$p(t) = p(0) + p'(0)t + p''(0)\frac{t^2}{2!} + \dots + p^{(n)}(0)\frac{t^n}{n!}.$$
 (1.39)

Доказательство. В силу результата леммы 1.33 и равенства (1.14) мы приходим к выводу о том, что справедливо следующее равенство:

$$x = \langle \mathbf{e}^j, x \rangle \mathbf{e}_j, \tag{1.40}$$

в котором нужно положить

$$x = p(t) \in P^n, \quad \mathbf{e}^j = D_t^{(j)}, \quad \mathbf{e}_j = \frac{t^j}{j!}$$
 (1.41)

и в результате получим равенство

$$p(t) = \sum_{j=0}^{n} \langle D_t^{(j)}, p(t) \rangle \frac{t^j}{j!} = \sum_{j=0}^{n} p^{(j)}(0) \frac{t^j}{j!}.$$
 (1.42)