Лекция 11

ЛЕММА ЖИРО

§ 0. План лекции

- Предварительные условия.
 Теорема типа Жиро.
- 3. Контрпример к теореме Жиро в случае области с угловой точкой на границе.

 - 4. Принцип максимума модуля.
 5. Единственность решения задачи Дирихле.
 6. Единственность решения задачи Неймана.

§ 1. Лемма Жиро

Пусть n_x — это поле внешних нормалей на ляпуновской границе $\partial D \in \mathbb{C}^{(1,\alpha)}$, и l_x — это поле внутренних не касательных направлений, т. е. таких векторов l_x , что

$$\cos(n_x, l_x) < 0 \tag{1.1}$$

для ляпуновской границы это означает, что в каждой точке $x_0 \in \partial D \cap O(x_0,d)$ ($\partial O(x_0,d)$ — сфера Ляпунова) отрезок $\overrightarrow{x_0},\overrightarrow{x}$ луча, выпущенного из точки x_0 по направлению l_{x_0} лежит внутри области D при достаточно малом расстоянии $|x-x_0|>0$.

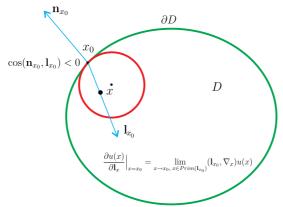


Рис. 1. Поле внутренних не касательных направлений.

Справедлива важная лемма Жиро о знаке косой производной непостоянного решения u(x) в точках ляпуновской границы ∂D области D.

Лемма Жиро. Пусть выполнены все условия принципа Хопфа относительно коэффициентов эллиптического уравнения

$$Lu(x) \stackrel{\text{def}}{=} \sum_{i,j=1,1}^{N,N} a_{ij}(x) \frac{\partial^2 u(x)}{\partial x_i \partial x_j} + \sum_{i=1}^N b_i(x) \frac{\partial u(x)}{\partial x_i} + c(x)u(x) = F(x).$$

Причём $u(x)\in\mathbb{C}^{(2)}(D)\cap\mathbb{C}^{(1)}(\overline{D}),\ u(x)\neq const$ и выполнено одно из следующих неравенств:

$$u(y_0) = \min_{x \in \partial D} u(x) < 0, \quad y_0 \in \partial D, \quad F(x) \le 0$$
 (1.2)

или

$$u(y_0) = \max_{x \in \partial D} u(x) > 0, \quad y_0 \in \partial D, \quad F(x) \geqslant 0.$$
 (1.3)

Тогда в каждой точке $y_0 \in \partial D$, в которой достигается глобальное минимальное отрицательное значение или глобальное максимальное

положительное значение, выполнены соответствующие неравенства

$$\frac{\partial u(x)}{\partial l_x}\Big|_{y_0 \in \partial D} > 0$$
 или $\frac{\partial u(x)}{\partial l_x}\Big|_{y_0 \in \partial D} < 0.$ (1.4)

Доказательство. Пусть выполнено неравенство (1.2). Шаг 1. Поскольку $\partial D\in\mathbb{C}^{(1,\alpha)}$, то в каждой точке $y_0\in\partial D$ найдется касающийся границы в этой точке замкнутый шар

$$\overline{O}(x^*, \rho_0), \quad \rho_0 = |y_0 - x^*| > 0, \quad O(x^*, \rho_0) \subset D,$$

где центр шара $x^* \in D$ — принадлежит отрезку луча $\overrightarrow{y_0}, \overrightarrow{x}$, выпущенного по направлению $-n_{y_0}$ — внутренней нормали к точке границы

Шаг 2. Рассмотрим шар

$$O(y_0, \rho_1), \quad 0 < \rho_1 < \rho_0$$

и пересечение

$$K = O(x^*, \rho_0) \cap O(y_0, \rho_1) \subset D. \tag{1.5}$$

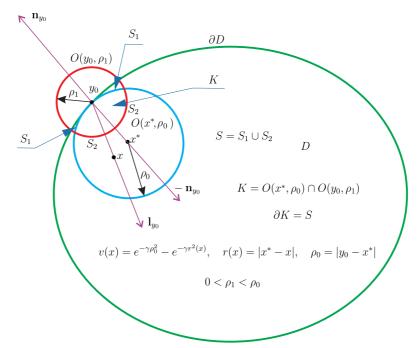


Рис. 2. Построение области K.

 $extit{\it Шаг}$ 3. В силу принципа Хопфа (слабый принцип максимума) и условия $u(x) \neq const$ имеем

$$u(x) > u(y_0)$$
 для всех $x \in D$. (1.6)

□ Действительно, поскольку

$$Lu(x) = F(x) \leqslant 0, \quad c(x) \leqslant 0 \quad \text{B} \quad D,$$

то в силу принципа Хопфа (сильный принцип максимума) если решение $u(x) \neq const$, то ни в какой точке $x \in D$ не может достигаться отрицательный глобальный минимум функции u(x) на \overline{D} . Следовательно, поскольку $\min_{y \in \partial D} u(y) = u(y_0) < 0$ и

$$\min_{x \in \overline{D}} u(x) = \min_{y \in \partial D} u(y),$$

ТО

$$u(x)>\min_{y\in\partial D}u(y)=u(y_0)$$
 для всех $x\in D.$ $oximes$

Шаг 4. Рассмотрим функцию

$$v(x) = e^{-\gamma \rho_0^2} - e^{-\gamma r^2(x)}, \quad \rho_0 = |x^* - y_0|, \quad r(x) = |x^* - x|.$$
 (1.7)

Представим границу S области $K = O(x^*, \rho_0) \cap O(y_0, \rho_1)$ в виде объединения

$$S = S_1 \cup S_2,$$

$$S_1 = S \cap \{x : |x - x^*| = \rho_0\}, \quad S_2 = S \cap \{x : |x - x^*| < \rho_0\}.$$

Причем

$$v(x)\Big|_{S_1} = 0$$
, так как $r(x) = |x - x^*|\Big|_{x \in S_1} = \rho_0$. (1.8)

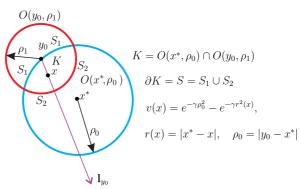


Рис. 3. Шар K и его граница $S=S_1\cup S_2$.

Шаг 5. Поскольку функция v(x) ограничена в K, то при достаточно малом $\lambda > 0$ из неравенства (1.6) вытекает неравенство снизу

$$u(x) \geqslant u(y_0) - \lambda v(x)$$
 Ha S . (1.9)

 \square Действительно, пусть $x\in S_1\backslash\{y_0\}$, тогда $u(x)>u(y_0)$, а при $x=y_0\in S_1$ имеем $u(x)=u(y_0)$. Следовательно, поскольку v(x)=0 при $x\in S_1$ имеет место неравенство

$$u(x) \geqslant u(y_0) = u(y_0) - \lambda v(x)$$
 при $x \in S_1$.

Пусть теперь $x\in S_2$. В этом случае $u(x)>u(y_0)$ и, кроме того, v(x)<0 при $x\in S_2$. Но тогда поскольку функция v(x) является ограниченной для всех $\gamma>0$

$$v(x)=e^{-\gamma r^2(x)}\left(e^{-\gamma(
ho_0^2-r^2(x))}-1
ight)\Rightarrow$$
 $\Rightarrow |v(x)|\leqslant 1$ для всех $x:\ r(x)=|x-x^*|<
ho_0.$

можно выбрать величину $\lambda>0$ настолько малой, чтобы было выполнено неравенство

$$u(x) \geqslant u(y_0) - \lambda v(x)$$
 при $x \in S_2$.

Шаг 6. Как мы уже доказали при рассмотрении теоремы о принципе Хопфа функция v(x) удовлетворяет при большом $\gamma>0$ следующему неравенству:

$$L(v)(x) < 0$$
 при $x \in K$. (1.10)

Введем функцию

$$\varphi(x) = u(x) - u(y_0) + \lambda v(x). \tag{1.11}$$

Поскольку

$$u(y_0) \leqslant 0$$
, $c(x) \leqslant 0$, $F(x) \leqslant 0$,

то имеет место неравенство

$$L(\varphi)(x) = F(x) - c(x)u(y_0) + \lambda L(v)(x) < 0, \quad x \in K.$$
 (1.12)

Заметим, что в силу (1.9) функция

$$\varphi(x) = u(x) - u(y_0) + \lambda v(x) \geqslant 0$$
 Ha S .

Стало быть, в силу результата следствия 1 из теоремы о принципе Хопфа имеем

 $\varphi(x) \geqslant 0$ при $x \in \overline{K}$. (1.13)

Шаг 7. Теперь воспользуемся тем, что $v(y_0)=0$ и в силу неравенства (1.13) выполнено неравенство

$$\frac{u(x) - u(y_0)}{|x - y_0|} \geqslant -\lambda \frac{v(x)}{|x - y_0|} = -\lambda \frac{v(x) - v(y_0)}{|x - y_0|}, \quad x \in K.$$

Отсюда вытекает неравенство

$$\begin{split} \frac{\partial u(x)}{\partial l_x} \Big|_{x=y_0 \in \partial D} &= \lim_{y_0 \leftarrow x \in (x-y_0) = l_{y_0} |x-y_0|} \frac{u(x) - u(y_0)}{|x-y_0|} \geqslant \\ &\geqslant -\lambda \lim_{y_0 \leftarrow x \in (x-y_0) = l_{y_0} |x-y_0|} \frac{v(x) - v(y_0)}{|x-y_0|} = \\ &= -\lambda \frac{\partial v(r)}{\partial r} \Big|_{x=y_0} \cos(n_{y_0}, l_{y_0}) = \\ &= -2\lambda \gamma \rho_0 e^{-\gamma \rho_0^2} \cos(n_{y_0}, l_{y_0}) > 0. \end{split}$$

Лемма доказана.

Замечание 1. Условие в лемме Жиро, что $\partial D \in \mathbb{C}^{(1,\alpha)}$, можно заменить условием *сферичности изнутри* в каждой точке $x_0 \in \partial D$.

Свойство сферичности изнутри. [?] Пусть x_0 — это любая точка границы ∂D области D. Если существует замкнутый шар B, такой, что $B \subset \overline{D}$ и $B \cap \partial D = \{x_0\}$, то мы скажем, что точка x_0 обладает свойством сферичности изнутри.

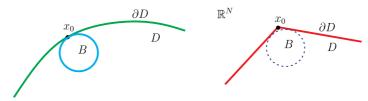


Рис. 4. Пример границы области со свойством сферичности изнутри и пример границы области с точкой без этого условия.

Контрпример к лемме Жиро. [?] Заметим, что лемма Жиро неверна, если граница ∂D области D содержит угловые точки.

 \square Действительно, пусть область D определена следующим образом:

$$D: x_1^2 + x_2^2 < R^2, \quad x_2 < \gamma_1 x_1, \quad x_2 > \gamma_2 x_1, \quad \gamma_1 > 0 > \gamma_2.$$

Тогда <u>угловая точка границы</u> — это точка $x^0=(0,0)$. Рассмотрим в области D следующее уравнение:

$$Lu(x) = \frac{\partial^2 u}{\partial x_1^2} + A \frac{\partial^2 u}{\partial x_2^2}, \quad A > |\gamma_1 \gamma_2|.$$

Функция

$$u(x_1, x_2) = (x_2 - \gamma_1 x_1)(x_2 - \gamma_2 x_1) + 1$$

удовлетворяет следующим условиям:

$$u(x) < 1$$
 B D , $u(x^0) = 1$, $Lu(x) = 2\gamma_1\gamma_2 + 2A > 0$,

НО

$$\left. \frac{\partial u}{\partial l_x} \right|_{x=x_0} = 0$$

по любому направлению l_{x_0} в точке $x_0 \in \partial D$. \boxtimes

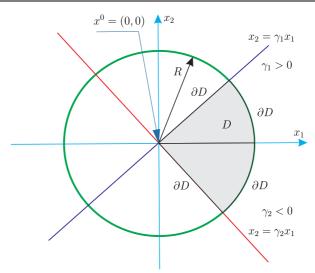


Рис. 5. Область D и ее граница ∂D .

§ 2. Следствия из леммы Жиро

Теперь мы рассмотрим вторую краевую задачу или задачу на-клонной производной при $c(x)\leqslant 0$ в D, причем $\partial D\in \mathbb{C}^{(1,h)}.$

Задача наклонной производной. Найти решение $u(x)\in \mathbb{C}^{(2)}(D)\cap \mathbb{C}^{(1)}(\overline{D})$ задачи

$$Lu(x)=F(x)$$
 b $D,$ $\frac{\partial u(x)}{\partial l_x}=f(x)$ ha $\partial D,$ (2.1)

где $F(x)\in \mathbb{C}(D)$ и $f(x)\in \mathbb{C}(\overline{D})$ и выполнено неравенство (1.1).

Справедлива следующая теорема:

Теорема единственности 2. Eсли c(x)=0, то задача наклонной производной единственно с точностью до постоянной. Eсли $c(x)\not\equiv 0$, то решение задачи наклонной производной единственно. Доказательство.

Шаг 1. Итак, пусть $u_1(x), u_2(x) \in \mathbb{C}^{(2)}(D) \cap \mathbb{C}^{(1)}(\overline{D})$ — это два решения задачи (2.6). Рассмотрим функцию

$$w(x) \stackrel{def:}{=} u_1(x) - u_2(x).$$

Эта функция удовлетворяет однородной задаче

$$Lw(x)=0$$
 в $D, \quad \frac{\partial w(x)}{\partial l_x}=0$ на $\partial D.$ (2.2)

Шаг 2. Предположим, что $w(x) \neq 0$ на границе ∂D и $w(x) \neq const.$ Введем следующие величины:

$$m \stackrel{def:}{=} \min_{x \in \partial D} w(x), \quad M \stackrel{def:}{=} \max_{x \in \partial D} w(x).$$
 (2.3)

Ясно, что $m\leqslant M$. Тогда возможны следующие случаи: 1. M>0 или 2. $M\leqslant 0$. Предположим, например, что M>0, тогда в некоторой точке $y_0\in\partial D$ выполнено неравенство

$$w(y_0) = \max_{y \in \partial D} w(y) > 0 \tag{2.4}$$

В силу леммы Жиро имеем

$$\left. \frac{\partial w(y)}{\partial l_y} \right|_{y_0 \in \partial D} < 0,$$

но это противоречит (2.2). Случай $M\leqslant 0$ разбивается на следующие два: 3. $m< M\leqslant 0$ и 4. $m=M\leqslant 0$. В третьем случае имеем m<0. Тогда в некоторой точке $y_0\in\partial D$ имеем

$$w(y_0) = \min_{y \in \partial D} w(y) < 0.$$

В силу леммы Жиро имеем в этой точке

$$\frac{\partial w(y)}{\partial l_y}\Big|_{y_0\in\partial D} > 0.$$

Опять пришли к противоречию с вторым равенством в (2.2). Четвертый случай разбивается еще на следующие два: 5. m=M<0 и 6. m==M=0. В пятом случае снова m<0 и мы снова приходим к противоречию с принципом Хопфа.

Шаг 3. Итак, рассмотрим шестой случай m=M=0, из которого сразу же получаем, что w(x) удовлетворяет следующей задаче:

$$Lw(x) = 0$$
 в D , $w(x) = 0$ на ∂D . (2.5)

В силу теоремы единственности первой краевой задачи мы получим, что w(x) = 0, что противоречит условию, что $w(x) \neq const$.

Итак, имеем w(x) = const.

Шаг 4. Пусть в некоторой точке $x_0 \in D$ имеем $c(x_0) < 0$. Тогда с одной стороны $w(x) = c_1$, а с другой стороны имеем

$$0 = Lw(x_0) = c(x_0)w(x_0) = c(x_0)c_1 \Rightarrow c_1 = 0 \Rightarrow w(x) = 0.$$

Теорема доказана.

Наконец, рассмотрим третью краевую задачу при $c(x) \leqslant 0$.

Третья краевая задача. Найти решение $u(x)\in\mathbb{C}^{(2)}(D)\cap\mathbb{C}^{(1)}(\overline{D})$ следующей задачи:

$$Lu(x) = F(x) \quad \text{B} \quad D, \tag{2.6}$$

$$\left(\frac{\partial u(x)}{\partial l_x} + \alpha(x)u(x)\right)\Big|_{x\in\partial D} = f(x) \quad \text{ Ha } \quad \partial D, \tag{2.7}$$

где $F(x) \in \mathbb{C}(D)$ и $f(x) \in \mathbb{C}(\overline{D})$ и выполнено неравенство (1.1).

Справедлива следующая теорема:

Теорема единственности 3. Если $\alpha(x)\leqslant 0$ и $\alpha(x)\not\equiv 0$, решение третьей краевой задачи единственно.

Доказательство.

Эту теорему мы предлагаем доказать самостоятельно студентам, используя лемму Жиро.

Теорема доказана.

Замечание 2. Отметим, что если $\alpha(x)<0$ на ∂D , то единственность третьей краевой задачи (2.6) может быть доказана <u>без применения леммы Жиро</u>. Действительно, нужно рассмотреть соответствующую однородную задачу: $F(x)\equiv 0$ и $f(x)\equiv 0$. По принципу максимума u(x) должна достигать положительного максимума или отрицательного минимума в некоторой точках границы: $x_0\in\partial D$ и, следовательно, удовлетворять соотношению

$$\left. rac{\partial u(x)}{\partial l_x} \right|_{x=x_0} \leqslant 0$$
 или $\left. rac{\partial u(x)}{\partial l_x} \right|_{x=x_0} \geqslant 0.$

Но это противоречит равенству

$$\frac{\partial u(x)}{\partial l_x}\Big|_{x=x_0} = -\alpha(x_0)u(x_0).$$

§ 3. Примеры решения задач

3адача 1. Пусть L — это равномерно эллиптический оператор в ограниченной области Ω и $c(x)\leqslant 0,$ причем

$$Lu(x) = 0$$
 при $x \in \Omega$.

Пусть $\partial\Omega=S_1\cup S_2$ и $S_1\cap S_2,\ S_1\neq\varnothing$, а поверхность S_2 удовлетворяет условию сферичности изнутри. Функция

$$u(x) \in \mathbb{C}^{(2)}(\Omega) \cap \mathbb{C}^{(1)}(\Omega \cup S_2) \cap \mathbb{C}^{(0)}(\overline{\Omega}),$$

причем выполнены следующие граничные условия

$$u(x)=0$$
 при $x\in S_1,$ $\sum_{i=1}^N \beta_i(x) \frac{\partial u(x)}{\partial x_i}=0$ при $x\in S_2.$

Векторное поле $\beta(x)=(\beta_1(x),...,\beta_N(x))$ имеет ненулевую нормальную составляющую в каждой точке $x\in S_2$. Доказать, что $u(x)\equiv 0$ в Ω .

Решение. Пусть $u(x)\not\equiv 0$ в Ω . Следовательно, в некоторой точке $x_0\in\Omega\cup S_2$ достигается либо положительный максимум (отрицательный минимум). Точка $x_0\not\in\Omega$, в силу сильного принципа максимума,

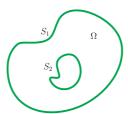


Рис. 6. Область Ω и ее граница $S_1 \cup S_2$.

поскольку в противном случае u(x) = const = 0 в силу связности множества Ω . Поэтому $x_0 \in S_2$. Тогда в этой точке в силу леммы Жиро

$$\sum_{i=1}^{N} \beta_i(x_0) \frac{\partial u(x_0)}{\partial x_i} \neq 0,$$

что противоречит условию задачи. Значит, $u(x) \equiv 0$ всюду в Ω .

Задача 2. Рассмотрим нелинейное уравнение

$$\Delta u = |u|^{p-2}u$$
 при $(x,y) \in \Omega \subset \mathbb{R}^N$, $N \geqslant 2$, $p > 2$ (3.1)

$$\frac{\partial u}{\partial n_x} + \beta(x)|u|^{q-2}u = 0 \quad \text{при} \quad x \in \partial\Omega, \quad q > 2, \tag{3.2}$$

где Ω — это ограниченная область с гладкой границей $\partial\Omega\in\mathbb{C}^{(1,\alpha)}$ при $\beta(x)\geqslant 0$. Доказать, что в классе $u(x)\in\mathbb{C}^{(2)}(\overline{\Omega})$ решение краевой задачи $u(x)\equiv 0$ в Ω .

Решение. Умножим обе части уравнения (3.1) на само решение и проинтегрируем по частям, в результате получим равенство

$$-\int_{\partial\Omega} \frac{\partial u(y)}{\partial n_y} u(y) ds_y + \int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |u(x)|^p dx = 0,$$

из которого с учетом граничного условия (3.2) получим равенство

$$\int\limits_{\partial\Omega}\beta(y)|u(y)|^q\,ds_y+\int\limits_{\Omega}|\nabla u(x)|^2\,dx+\int\limits_{\Omega}|u(x)|^p\,dx=0\Rightarrow u(x)\equiv 0\quad \text{B}\quad \Omega.$$

Задача 3. Рассмотрим нелинейное уравнение

$$\Delta u = |u|^{p-2}u + f(x)$$
 при $(x,y) \in \Omega \subset \mathbb{R}^N$, $N \geqslant 2$, $p > 2$ (3.3)

$$\frac{\partial u}{\partial n_x} + \beta(x) |u|^{q-2} u = g(x) \quad \text{при} \quad x \in \partial \Omega, \quad q > 2, \tag{3.4}$$

где Ω — это ограниченная область с гладкой границей $\partial\Omega\in\mathbb{C}^{(1,\alpha)}$ при $\beta(x)\geqslant 0$. Доказать, что в классе $u(x)\in\mathbb{C}^{(2)}(\overline{\Omega})$ решение краевой задачи единственно.

Указание. Решение задачи предлагается студентам. Нужно рассмотреть два решения $u_1(x)$ и $u_2(x)$ задачи (3.3) и (3.4), а затем вычесть соответствующие уравнения вида (3.3), справедливые для

каждой из функций, умножить на $u_1(x)-u_2(x)$ и проинтегрировать по области Ω с учетом граничных условий.