Численные методы

ЛЕКТОР ДОЦЕНТ БОРОДАЧЕВ Л.В.

Аннотация

Курс представляет собой введение в теорию численных методов, требующее минимум сведений из математического анализа, линейной алгебры и теории дифференциальных уравнений.

Программа курса

§1 Введение: основные понятия.

- 1. Предмет вычислительной математики.
- 2. Общая задача вычисления.
- 3. Методология численного решения.
- 4. Оценка эффективности численного метода

§2 Интерполяция и приближение функций.

- 1. Постановка задачи интерполяции.
- 2. Полиномиальная интерполяция.
 - а. Интерполяционный многочлен Лагранжа.
 - b. Интерполяционный многочлен Ньютона.
 - с. Погрешность полиномиальной интерполяции.
- 3. Сплайн-интерполяция.
 - а. Общее определение.
 - b. Построение кубичного сплайна.
- 4. Среднеквадратичная аппроксимация.
 - а. Постановка задачи.
 - b. Существование наилучшего приближения.

§3 Численное интегрирование и дифференцирование.

- 1. Постановка задачи интегрирования.
- 2. Квадратурные формулы Ньютона-Котеса.
- 3. Практически важные случаи.
 - а. Формула трапеций.
 - а. Формула парабол (метод Симпсона).
 - b. Составные квадратурные формулы.
- 4. Апостериорная оценка погрешности. Метод Рунге.
- 5. Постановка задачи дифференцирования.
- 6. Дифференцирование на основе интерполяции.
 - а. Связь интерполяционной и разностной производных.
 - b. Оценка погрешности дифференцирования.

§4 Численное решение нелинейных уравнений.

- 1. Постановка задачи.
- 2. Метод простой итерации.
- 3. Сходимость метода простой итерации.
- 4. Реализация метода простой итерации
 - а. Метод релаксации.
 - b. Метод касательных (Ньютона).

- с. Метод секущих.
- 5. Обобщение метода на системы нелинейных уравнений.
 - а. Постановка задачи.
 - b. Простейший одношаговый метод.

§5 Численные методы линейной алгебры

- 1. Решение системы линейных алгебраических уравнений (СЛАУ). Классификация методов.
- 2. СЛАУ как операторное уравнение.
- 3. Устойчивость решения СЛАУ. Обусловленность матриц.
- 4. Прямые методы решения СЛАУ.
 - а. Частные случаи систем.
 - b. Системы общего вида. Метод Гаусса.
 - с. Связь метода Гаусса с разложением матриц
- 5. Итерационные методы решения СЛАУ
 - а. Простейшие одношаговые методы.
 - Метод релаксации.
 - Метод Якоби.
 - Метод Зейделя.
 - Метод верхней релаксации.
 - b. Сходимость простейших итерационных методов.
- 6. Алгебраическая проблема собственных значений.
 - а. Вычисление собственных значений.
 - b. Нахождение собственных векторов.

§6 Разностное решение дифференциальных уравнений.

- 1. Общая постановка и классификация задач.
- 2. Основные понятия теории разностных схем.
 - а. Аппроксимация.
 - b. Устойчивость.
 - с. Сходимость.
- 3. Задача Коши для обыкновенных дифференциальных уравнений.
 - а. Формулировка задачи вычисления.
 - Классификация методов решения.
 - Метод Тейлора (одношаговые схемы).
 - Метод интегрирования (многошаговые схемы).
- 4. Реализация базовых схем для задачи Коши.
 - а. Многоэтапный одношаговый метод Рунге-Кутты.
 - b. Линейный многошаговый метод Адамса-Бэшфорта.