TEMA 8

Основные понятия вариационного исчисления. Задача с закрепленными концами.

Основные определения и теоремы

Если на некотором множестве функций указано правило, которое ставит в соответствие каждой функции некоторое число, то на этом множестве задан функционал. Будем рассматривать функционалы, действующие из линейного нормированного пространства E в пространство вещественных чисел $\mathbb{R}^1 \colon E \to \mathbb{R}^1$. Итак, функционал — это оператор, множество значений которого состоит из чисел.

Будем рассматривать следующие линейные пространства E (или их подмножества E'):

1) C[a,b] — пространство непрерывных на [a,b] функций, в котором определена норма

$$||y||_{C[a,b]} = \max_{x \in [a,b]} |y(x)|.$$

2) $C^{(1)}[a,b]$ — пространство функций, непрерывных вместе со своими первыми производными на [a,b]. Норма в этом пространстве определяется как

$$||y||_{C^{(1)}[a,b]} = \max_{x \in [a,b]} |y(x)| + \max_{x \in [a,b]} |y'(x)|.$$

Определение. Функционал V[y] называется <u>непрерывным в точке</u> $y_0 \in E$, если для $\forall \varepsilon > 0 \quad \exists \delta > 0$ такое, что при $\forall y \in E : \|y - y_0\| \le \delta$ выполняется неравенство $|V[y] - V[y_0]| \le \varepsilon$.

Аналогично можно дать определение непрерывности функционала в точке $y_0 \in E'$, если функционал рассматривается только на множестве E'. Функционал называется непрерывным на всём пространстве E (множестве E'), если он непрерывен в каждой точке E(E').

Определение. Точка y_0 является точкой <u>локального минимума</u> (<u>максимума</u>) функционала V[y], если найдется число r>0 такое, что для любого $y\in E: \parallel y-y_0\parallel_E \le r$ выполнено неравенство $V[y]\ge V[y_0]$ ($V[y]\le V[y_0]$).

Пусть $y_0 \in E$ - произвольная фиксированная точка, $h \in E$ - произвольный элемент E. Рассмотрим функцию вещественной переменной t $\Phi(t) \equiv V[y_0 + th]$, t – вещественное число.

Определение. Если для любого $h \in E$ существует $\Phi'(t)_{t=0} = \frac{d}{dt}V[y_0 + th]_{t=0}$, то эта производная называется вариацией (слабой вариацией) функционала V в точке y_0 и обозначается $\delta V(y_0,h)$. Очевидно, что $V[y_0 + th] - V[y_0] = t \, \delta V(y_0,h) + o(|t|)$.

Определение. Функционал V[y] называется дифференцируемым в точке y_0 , если для любого $h \in E$ $V[y_0+h]-V[y_0]=dV(y_0,h)+o(\|h\|)$, где $dV(y_0,h)$ - линейный и непрерывный по h функционал, который иногда называют <u>сильной вариацией</u> в точке y_0 , в то время как функционал (от h) $\delta V(y_0,h)$ - слабой вариацией в точке y_0 .

Если существует сильная вариация, то существует и вариация (слабая вариация). Обратное, вообще говоря, неверно.

<u>Теорема</u> (необходимое условие экстремума). Пусть $y_0 \in E$ - точка экстремума V[y] и существует $\delta V(y_0,h)$ для всякого $h\in E$. Тогда $\delta V(y_0,h)=0$.

Конкретизируем вид функционала и множество допустимых функций. Рассмотрим функционал $V[y] = \int_{a}^{b} F(x, y, y') dx$ на множестве функций $E' \subseteq E = C^{1}[a, b]$ таком, что $E' = \{ y \in C^{(1)}[a,b], y(a) = A, y(b) = B \}$. Простейшая задача вариационного исчисления (задача с закрепленными концами): среди всех функций из множества E' определить ту, которая реализует экстремум функционала $V[y] = \int_{a}^{b} F(x, y, y') dx$.

Определение. Функционал достигает сильного минимума (максимума) на функции $y_0(x)$, если найдется число r > 0 такое, что для любой функции из сильной окрестности $y \in E'$: $\|y - y_0\|_{C[a,b]} = \max_{x \in [a,b]} |y(x) - y_0(x)| \le r$, выполнено неравенство $y_0(x)$, $V[y] \ge V[y_0] \quad (V[y] \le V[y_0]).$

Определение. Функционал достигает слабого минимума (максимума) на функции $y_0(x)$, если найдется число r > 0 такое, что для любой функции из слабой окрестности $y_0(x)\,, \quad \text{т.е.} \quad y \in E'\colon \ \, ||\,y-y_0\,||_{C^{(1)}[a,b]} = \max_{x \in [a,b]} |\,y(x)-y_0(x)\,| + \max_{x \in [a,b]} |\,y'(x)-y_0'(x)\,| \leq r\,, \quad \text{выполнено}$ неравенство $V[y] \ge V[y_0]$ $(V[y] \le V[y_0])$

Ясно, что если на функции $y_0(x)$ реализуется сильный экстремум, то имеет место и слабый в той же точке. Обратное, вообще говоря, неверно.

Теорема (необходимое условие экстремума в задаче с закрепленными концами).

- Пусть y(x) реализует экстремум (сильный или слабый) функционала 1) $V[y] = \int_a^b F(x, y, y') dx$ с условиями y(a) = A, y(b) = B и является непрерывно дифференцируемой.
- Пусть функция F(x, y, y') имеет непрерывные производные до второго порядка 2) включительно при $x \in [a,b]$ и в некоторой области изменения y и y', содержащей

Тогда y(x) является решением краевой задачи для уравнения Эйлера

$$F_{y} - \frac{d}{dx} F_{y'} = 0;$$
 $y(a) = A, \quad y(b) = B.$

 $F_y - \frac{d}{dx} F_{y'} = 0; \qquad y(a) = A, \quad y(b) = B \; .$ Решения этой задачи называются <u>экстремалями</u> функционала $V[y] = \int\limits_{a}^{b} F(x,y,y') \, dx$.

Так как уравнение Эйлера, вообще говоря, дифференциальное уравнение второго порядка, то решение его может быть как единственным, так и не единственным, и может не существовать вовсе.

Приемы интегрирования уравнения Эйлера зависят от конкретного вида функции F(x, y, y'). Приведем некоторые примеры для некоторых, часто встречающихся случаев.

F не зависит от y': F(x, y, y') = F(x, y).

Уравнение Эйлера в этом случае имеет вид $F_{v}(x,y) = 0$, т.е. является не дифференциальным, а алгебраическим, поэтому его решение (если оно существует) представляет собой одну или несколько кривых, которые, вообще говоря, не удовлетворяют граничным условиям y(a) = A, y(b) = B.

Итак, решение краевой задачи для уравнения Эйлера в рассматриваемом случае, вообще говоря, не существует.

2. F зависит от y' линейно: $F(x,y,y') = M(x,y) + y' \cdot N(x,y)$. Уравнение Эйлера имеет вид $M_y + y' N_y - \frac{d}{dx} N(x,y) = M_y + y' \cdot N_y - N_x - N_y \cdot y' = 0$, т.е.

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 0.$$

Полученное уравнение не является дифференциальным, поэтому краевая задача для уравнения Эйлера также, вообще говоря, не имеет решения.

В частном случае $\frac{\partial M}{\partial y} \equiv \frac{\partial N}{\partial x}$ выражение M(x,y) dx + N(x,y) dy является полным дифференциалом, и значение функционала $V[y] = \int\limits_a^b F(x,y,y') dx = \int\limits_{(a,A)}^{(b,B)} M(x,y) dx + N(x,y) dy$ не зависит от выбора кривой, соединяющей точки (a,A) и (b,B).

- 3. F зависит только от y': F(x,y,y') = F(y'). Уравнение Эйлера имеет вид $y'' \cdot F_{y'y'}(y') = 0$. Далее возможны два варианта:
- а) y'' = 0, тогда общее решение есть $y(x) = C_1 x + C_2$, где C_1 , C_2 произвольные постоянные, определяемые из граничных условий;
- б) $F_{y'y'}(y') = 0$, тогда $y' = k_i$, где k_i корни алгебраического уравнения F''(t) = 0, и соответствующие решения $y_i(x) = k_i x + \tilde{C}_i$ являются частными случаями п. а).

Поэтому, решениями уравнения Эйлера в обоих случаях а) и б) являются прямые.

4. F не зависит от y: F(x, y, y') = F(x, y').

Уравнение Эйлера принимает вид $\frac{d}{dx}F_{y'}(x,y')=0$ и имеет первый интеграл $F_{y'}(x,y')=C$, где C - произвольная постоянная. Дальнейшее интегрирование производится путем разрешения относительно производной, либо путем введения параметра.

5. F не зависит от x: F(x,y,y') = F(y,y'). Уравнение Эйлера в этом случае имеет вид $F_y - y' \cdot F_{yy'} - y'' \cdot F_{y'y'} = 0$.

Умножив на y', получим $\frac{d}{dx}(F-y'\cdot F_{y'})=0$ и найдем первый интеграл $F-y'\cdot F_{y'}=C$. Дальнейшее интегрирование также производится методами, развитыми для дифференциальных уравнений первого порядка, не разрешенных относительно производной.

Итак, если экстремаль существует, то она, как правило, может быть включена в однопараметрическое семейство решений уравнения Эйлера y = y(x, C).

Определение. Если через каждую точку области G на плоскости xOy проходит единственная кривая семейства y = y(x, C), то это семейство называют *собственным полем* в области G.

Определение. Если все кривые семейства y = y(x, C) проходят через некоторую точку $(x_0, y_0) \in G$ (центр пучка), а через каждую точку области, отличную от (x_0, y_0) , проходит одна и только одна кривая семейства, то y = y(x, C) называют *центральным полем* в области G.

Выбор любой точки области G (кроме центра пучка во втором случае) определяет единственную экстремаль, проходящую через эту точку, и задает в области G некоторую

функцию p(x,y) - наклон поля экстремалей: p(x,y) в каждой точке $(x,y) \in G$ равна тангенсу угла наклона той экстремали, которая проходит через эту точку.

Сформулируем достаточные условия экстремума в задаче с закрепленными концами.

Достаточные условия Вейерштрасса. Пусть функция $y = y_0(x)$ удовлетворяет необходимому условию экстремума, т.е. является экстремалью в задаче с закрепленными концами. Будем считать, что экстремаль $y = y_0(x)$ на сегменте [a,b] может быть включена в поле экстремалей (собственное или центральное).

Рассмотрим кривые y = y(x), удовлетворяющие тем же граничным условиям, что и экстремаль $y = y_0(x)$, $y(x) \in C^{(1)}[a,b]$ (кривые сравнения).

Функция $E(x,y,p,y') = F(x,y,y') - F(x,y,p) - (y'-p)F_p(x,y,p)$ называется функцией Вейеритрасса. В аргументах функции E(x,y,p,y') через y' обозначается производная кривой сравнения y(x) в точке (x,y), а через p=p(x,y) - наклон поля экстремалей в этой точке.

Приращение функционала V[y] выражается через функцию Вейерштрасса ($y_0(x)$ - исследуемая экстремаль, а y(x) - кривая сравнения):

$$\Delta V = V[y(x)] - V[y_0(x)] = \int_a^b E(x, y(x), p(x, y(x)), y'(x)) dx.$$

Поэтому достаточным условием достижения функционалом V[y] экстремума на экстремали $y_0(x)$ является знакоопределенность функции E(x,y,p,y') в окрестности экстремали $y_0(x)$. Экстремум будет слабым или сильным в зависимости от того, в слабой или сильной окрестности экстремали $y_0(x)$ сохраняет знак функция Вейерштрасса.

Достаточные условия слабого экстремума:

Кривая $y = y_0(x)$ доставляет слабый экстремум функционалу $V[y] = \int_a^b F(x,y,y') dx$ в задаче с закрепленными концами y(a) = A, y(b) = B, если:

- 1) кривая $y = y_0(x)$ является экстремалью функционала, т.е. является решением краевой задачи для уравнения Эйлера с условиями y(a) = A, y(b) = B;
- 2) экстремаль $y = y_0(x)$ может быть включена в поле экстремалей на отрезке [a,b];
- 3) функция Вейерштрасса сохраняет знак во всех точках <u>слабой окрестности</u> экстремали $y = y_0(x)$, т.е. в точках (x,y), близких к экстремали $y = y_0(x)$, и для значений y', близких к значениям p(x,y) (p(x,y) заданная функция, так как определено поле экстремалей).

Если $E \ge 0$, то функционал V[y] имеет на $y_0(x)$ слабый минимум, если $E \le 0$, то функционал V[y] имеет на $y_0(x)$ слабый максимум.

Достаточные условия сильного экстремума.

Кривая $y = y_0(x)$ доставляет <u>сильный</u> экстремум функционалу $V[y] = \int_a^b F(x, y, y') dx$ в задаче с закрепленными концами y(a) = A, y(b) = B, если:

- 1) кривая $y = y_0(x)$ является экстремалью функционала т.е. является решением краевой задачи для уравнения Эйлера с условиями y(a) = A, y(b) = B;
- 2) экстремаль $y = y_0(x)$ может быть включена в поле экстремалей на отрезке [a,b];

3) функция Вейерштрасса сохраняет знак во всех точках сильной окрестности экстремали $y = y_0(x)$, т.е. в точках (x, y), близких к экстремали $y = y_0(x)$, и для произвольных значений y'.

Если $E \ge 0$, то функционал V[y] имеет на $y_0(x)$ сильный минимум, если $E \le 0$, то функционал V[y] имеет на $y_0(x)$ сильный максимум.

Достаточное условие отсутствия экстремума.

Если в точках экстремали $y = y_0(x)$ при некоторых значениях y' функция Е имеет противоположные знаки, то сильный экстремум на $y_0(x)$ не достигается.

Если в точках экстремали $y = y_0(x)$ при значениях y' сколь угодно близких к p(x, y), функция Е имеет противоположные знаки, то на $y_0(x)$ не достигается и слабый экстремум.

Достаточные условия Лежандра.

Пусть функция F(x,y,y') имеет непрерывную вторую производную $F_{y'y'}(x,y,y')$ и экстремаль $y = y_0(x)$ включена в поле экстремалей.

Достаточные условия слабого экстремума ($F_{y'y'}$ исследуется на самой экстремали $y = y_0(x)$).

Если <u>на экстремали</u> $y=y_0(x)F_{y'y'}>0$, то функционал V[y] имеет на $y_0(x)$ слабый минимум; если <u>на экстремали</u> $y=y_0(x)F_{y'y'}<0$, то функционал V[y] имеет на $y_0(x)$ слабый максимум.

Достаточные условия сильного экстремума (($F_{y'y'}$ исследуется в сильной окрестности экстремали $y = y_0(x)$).

Если $F_{y'y'} \ge 0$ в точках (x,y), близких к экстремали $y = y_0(x)$, и для произвольных значений y', то V[y] имеет на экстремали $y_0(x)$ сильный минимум.

Если $F_{y'y'} \le 0$ в точках (x,y), близких к экстремали $y = y_0(x)$, и для произвольных значений y', то V[y] имеет на экстремали $y_0(x)$ сильный максимум.

Примеры решения задач

Пример 8.1. Вычислить вариацию функционала $V[y] = y^2(0) + \int_{-1}^{1} (xy + y'^2) dx$ в точке y.

Решение. Найдем сначала вариацию функционала V[y], воспользовавшись первым определением (слабую вариацию):

$$\delta V(y,h) = \frac{d}{dt} V[y+th] \Big|_{t=0} = \frac{d}{dt} \left[(y(0)+th(0))^2 + \int_{-1}^{1} \left[x(y(x)+th(x)) + (y'(x)+th'(x))^2 \right] dx \right]_{t=0} =$$

$$= 2y(0)h(0) + \int_{-1}^{1} \left[x \cdot h(x) + 2y' \cdot h'(x) \right] dx.$$

Теперь воспользуемся вторым определением и найдем вариацию как линейную часть приращения функционала в точке y (сильную вариацию). Зададим приращение аргумента функционала - произвольную непрерывно дифференцируемую функцию h(x): h(-1) = h(1) = 0, и вычислим приращение $\Delta V = V[y+h] - V[y] =$

$$= [y(0) + h(0)]^{2} - y^{2}(0) + \int_{-1}^{1} [x(y(x) + h(x)) + (y'(x) + h'(x))^{2}] dx - \int_{-1}^{1} [xy(x) + y'^{2}(x)] dx =$$

$$= 2y(0)h(0) + \int_{-1}^{1} [x \cdot h(x) + 2y'(x) \cdot h'(x)] dx + h^{2}(0) + \int_{-1}^{1} h'^{2}(x) dx.$$

Линейная относительно h часть приращения - первые два слагаемые последнего равенства - и есть искомая (сильная) вариация

$$dV[y,h] = 2y(0)h(0) + \int_{-1}^{1} [x \cdot h(x) + 2y' \cdot h'(x)] dx,$$

которая в данном случае совпадает с полученной ранее (слабой) вариацией $\delta V[y,h]$.

Пример 8.2. Найти экстремаль функционала $V[y] = \int_0^1 (y^2 + y'^2) dx$ с дополнительными условиями y(0) = 0, y(1) = 0.

Доказать, что на полученной экстремали достигается экстремум функционала

- а) путем непосредственного вычисления приращения функционала;
- б) применив достаточные условия в форме Вейерштрасса и Лежандра.

Решение. Уравнение Эйлера для функционала в исследуемой задаче y'' - y = 0 имеет общее решение $y = C_1 e^x + C_2 e^{-x}$. Граничным условиям удовлетворяет экстремаль $y_0(x) \equiv 0$.

- а) Непосредственное вычисление приращения функционала на кривой $y_0(x) \equiv 0$ дает $\Delta V = V[y] V[y_0(x) \equiv 0] = \int_0^1 (y^2 + y'^2) dx \ge 0 \ .$ Поэтому на ней реализуется сильный (а, следовательно, и слабый) минимум.
- б) Заметим, что экстремаль $y_0(x) \equiv 0$ при $x \in [0,1]$ может быть включена в собственное поле экстремалей $y = C e^x$.
- 1. Функция Вейерштрасса $E(x,y,p,y') = y^2 + y'^2 y^2 p^2 (y'-p)2p = (y'-p)^2 \ge 0$ при любых y,y', т.е. сохраняет знак в сильной окрестности кривой $y_0(x) \equiv 0$. Следовательно, выполнено достаточное условие Вейерштрасса, и экстремаль $y_0(x) \equiv 0$ реализует сильный (и слабый) минимум.
- 2. $F_{y'y'}=2>0$ при любых y,y', поэтому выполнено достаточное условие Лежандра. Функционал на экстремали $y_0(x)\equiv 0$ достигает сильного (и слабого) минимума.

Пример 8.3. Найти экстремаль функционала $V[y] = \int_{-1}^{0} (12xy - y'^2) dx$ с дополнительными условиями y(-1) = 1, y(0) = 0.

Доказать, что на полученной экстремали достигается экстремум функционала

- а) путем непосредственного вычисления приращения функционала;
- б) применив достаточные условия в форме Вейерштрасса и Лежандра.

Решение. Уравнение Эйлера для функционала в рассматриваемой задаче y'' + 6x = 0 имеет общее решение $y = -x^3 + C_1x + C_2$. Граничным условиям удовлетворяет экстремаль $v_0(x) = -x^3$.

а) Зададим приращение аргумента функционала - произвольную непрерывно дифференцируемую функцию h(x), удовлетворяющую условиям h(-1) = h(0) = 0, - и вычислим приращение функционала на экстремали $y_0(x) = -x^3$:

$$\Delta V = V[-x^{3} + h] - V[-x^{3}] = \int_{-1}^{0} [12x(-x^{3} + h(x)) - (-3x^{2} + h'(x))^{2}] dx - \int_{-1}^{0} [12x(-x^{3}) - (-3x^{2})^{2}] dx =$$

$$= \int_{-1}^{0} [12x h(x) + 6x^{2}h'(x) - h'^{2}(x)] dx = \int_{-1}^{0} [12x h(x) - h'^{2}(x)] dx + \int_{-1}^{0} 6x^{2}h'(x) dx =$$

$$= \underbrace{6x^{2}h(x)\Big|_{-1}^{0}}_{=0} - \int_{-1}^{0} 12x h(x) dx + \int_{-1}^{0} [12x h(x) - h'^{2}(x)] dx = -\int_{-1}^{0} h'^{2}(x) dx \le 0.$$

Итак, $\Delta V \leq 0$ независимо от y' (в сильной окрестности), поэтому на экстремали $y_0(x) = -x^3$ реализуется сильный (а, следовательно, и слабый) максимум.

- б) Заметим, что экстремаль $y_0(x) = -x^3$ при $x \in [-1,0]$ может быть включена в собственное поле экстремалей (решений уравнения Эйлера) $y = -x^3 + C$.
- 1. Функция Вейерштрасса

$$E(x, y, p, y') = 12xy - y'^{2} - (12xy - p^{2}) - (y' - p)(-2p) = -(y' - p)^{2} \le 0$$

при любых y, y', т.е. сохраняет знак в сильной окрестности кривой $y_0(x) = -x^3$. Следовательно, выполнено достаточное условие Вейерштрасса, и экстремаль $y_0(x) = -x^3$ реализует сильный (и слабый) максимум.

2. $F_{y'y'} = -2 < 0$ при любых y, y', поэтому выполнено достаточное условие Лежандра. Функционал на экстремали $y_0(x) = -x^3$ достигает сильного (и слабого) максимума.

Пример 8.4. Пусть $V[y] = \int_a^b [p(x)y'^2 + q(x)y^2 + 2y\varphi(x)]dx$, где функция p(x) > 0 - непрерывно дифференцируема, а $q(x) \ge 0$ и $\varphi(x)$ непрерывные на [a,b] функции.

- а) Записать уравнение для экстремалей в задаче с закрепленными концами y(a) = A, y(b) = B.
- б) Показать, что если $y_0(x)$ является экстремалью функционала V[y], то на ней реализуется минимум этого функционала.

Решение. Уравнение Эйлера для экстремалей изучаемого функционала имеет вид $\frac{d}{dx} \big(p(x)y' \big) - q(x)y = \varphi(x)$. Нетрудно показать, что при сформулированных предположениях на функции $p(x), \, q(x), \, \varphi(x)$, это уравнение с дополнительными условиями $y(a) = A, \, y(b) = B$ имеет единственное решение $y = y_0(x)$, которое и определяет экстремаль в рассматриваемой задаче.

Зададим h(x): h(a) = h(b) = 0 и определим знак приращения функционала на исследуемой экстремали:

$$\Delta V = V[y_0(x) + h(x)] - V[y_0(x)] = \int_a^b [p(x)((y_0' + h')^2 - y_0'^2) + q(x)((y_0 + h)^2 - y_0^2) + 2\varphi(x)h]dx =$$

$$= \int_0^1 [2p(x)y_0'h' + 2q(x)y_0h + 2\varphi(x)h]dx + \int_a^b p(x)h'^2(x)dx + \int_a^b q(x)h^2(x)dx > 0,$$

так как первое слагаемое в этой сумме обращается в ноль. Действительно, интегрируя по частям первое слагаемое, получим

$$2\int_{a}^{b} [p(x)y_{0}'h' + q(x)y_{0}h + \varphi(x)h]dx = \underbrace{2p(x)y_{0}(x)h(x)\Big|_{a}^{b}}_{=0, m.\kappa. h(a)=h(b)=0} + 2\int_{a}^{b} \underbrace{[-(p(x)y_{0}')' + q(x)y_{0} + \varphi(x)]}_{=0 \text{ 6 cutty yp-n 3tinepa}} h(x)dx = 0$$

Итак, $\Delta V = V[y_0(x) + h(x)] - V[y_0(x)] > 0$, поэтому на экстремали $y = y_0(x)$ достигается минимум исследуемого функционала, что и требовалось доказать.

Пример 8.5. Исследовать на экстремум функционал $V[y] = \int_0^a y'^3 dx$ с граничными условиями y(0)=0, y(a)=b (a>0, b>0).

Решение. Уравнение Эйлера для данного функционала имеет вид y''=0. Семейство экстремалей определяется формулой $y=C_1x+C_2$. Граничным условиям удовлетворяет единственная экстремаль $y=\frac{b}{a}x$.

Найденная экстремаль может быть включена в собственное поле $y = \frac{b}{a}x + C$, наклон поля экстремалей $p = \frac{b}{a}$.

Функция Вейерштрасса имеет вид

$$E(x, y, p, y') = y'^3 - p^3 - (y' - p) 3p^2 = (y' - p)^2 (y' + 2p)$$

и знак ее определяется знаком выражения $y'+2p=y'+2\frac{b}{a}$. Следовательно, E(x,y,p,y') может менять знак в зависимости от y'. Поэтому сильного экстремума на исследуемой экстремали нет.

Вместе с тем, функция Вейерштрасса сохраняет знак, если y' близко к $p=\frac{b}{a}>0$ (наклону поля экстремалей), т.е. $y'+2p=y'+2\frac{b}{a}\geq 0$ и неравенство $E(x,y,p,y')\geq 0$ выполнено для всех кривых сравнения y=y(x) из некоторой слабой окрестности экстремали $y=\frac{b}{a}x$. Таким образом, на экстремали $y=\frac{b}{a}x$, согласно достаточному условию Вейерштрасса, достигается слабый минимум.

Пример 8.6. Показать, что в задаче с закрепленными концами

$$V[y] = \int_{0}^{a} (y^{2} - y'^{2}) dx, \quad y(0) = 0, \quad y(a) = 0$$

- а) в случае $a=\frac{\pi}{2}<\pi$ на экстремали $y_0(x)\equiv 0$ реализуется сильный максимум функционала;
- б) в случае $a = \frac{5\pi}{4} > \pi$ функция $y_0(x) \equiv 0$ также является единственной экстремалью в рассматриваемой задаче, причем функция Вейерштрасса сохраняет знак на этой кривой, однако экстремум на ней не достигается;
- в) в случае $a = \pi$ экстремаль определяется не единственным образом.

Решение. Уравнение Эйлера имеет вид y'' + y = 0. Его общее решение есть $y = C_1 \sin x + C_2 \cos x$. Граничным условиям y(0) = 0, y(a) = 0, как в случае а), так и в случае б) удовлетворяет единственная функция $y_0(x) \equiv 0$.

а) Если $x \in [0, \frac{\pi}{2}]$, то экстремаль $y_0(x) \equiv 0$ может быть включена, например, в центральное поле экстремалей $y = C \sin x$.

Функция Вейерштрасса

$$E(x, y, p, y') = y^2 - y'^2 - (y^2 - p^2) + (y' - p)^2 p = -(y' - p)^2 \le 0$$

при любых y,y', т.е. сохраняет знак в сильной окрестности кривой $y_0(x)\equiv 0$. Следовательно, выполнено достаточное условие Вейерштрасса, и экстремаль $y_0(x)\equiv 0$ реализует сильный (и слабый) максимум.

б) Если $x \in [0, \frac{5\pi}{4}]$, то функция Вейерштрасса $E(x, y, p, y') = -(y' - p)^2 \le 0$ также сохраняет знак в сильной окрестности кривой $y_0(x) \equiv 0$. Заметим, что $V[y \equiv 0] = 0$ и докажем, что на функции $y_0(x) \equiv 0$ не достигается слабый (следовательно, и сильный) экстремум.

Рассмотрим последовательность $\varphi_n(x) = \frac{1}{n} \sin \frac{4}{5} x$. Ясно, что при достаточно больших n выполнено $\|\varphi_n - y_0\|_{C^1[0,\frac{4\pi}{5}]} = \max_{x \in [0,\frac{4\pi}{5}]} \left| \frac{1}{n} \sin \frac{4x}{5} \right| + \max_{x \in [0,\frac{4\pi}{5}]} \left| \frac{4}{5n} \cos \frac{4x}{5} \right| \le r$, т.е. все указанные

функции, начиная с некоторого номера, принадлежат слабой окрестности $y_0(x) \equiv 0$. Однако

$$V[\varphi_n] = \int_{0}^{\frac{5\pi}{4}} \frac{1}{n^2} \sin^2 \frac{4x}{5} dx - \int_{0}^{\frac{5\pi}{4}} \frac{16}{25n^2} \cos^2 \frac{4x}{5} dx = \frac{9}{25n^2} \int_{0}^{\frac{5\pi}{4}} \cos^2 \frac{4x}{5} dx > 0 = V[0],$$

следовательно, на функции $y_0(x) \equiv 0$ слабый (и сильный) максимум не достигается.

Рассмотрим последовательность $\psi_n(x) = \frac{1}{n^2} \sin \frac{4n}{5} x$. Ясно, что при достаточно больших n выполнено $\|\psi_n - y_0\|_{C^1[0,\frac{4\pi}{5}]} = \max_{x \in [0,\frac{4\pi}{5}]} \left| \frac{1}{n^2} \sin \frac{4nx}{5} \right| + \max_{x \in [0,\frac{4\pi}{5}]} \left| \frac{4}{5n} \cos \frac{4nx}{5} \right| \le r$, т.е. все указанные функции, начиная с некоторого номера, принадлежат слабой окрестности $y_0(x) \equiv 0$.

Однако, при достаточно больших п

$$V[\psi_n] = \int_{0}^{\frac{5\pi}{4}} \frac{1}{n^4} \sin^2 \frac{4nx}{5} dx - \int_{0}^{\frac{5\pi}{4}} \frac{16}{25n^2} \cos^2 \frac{4nx}{5} dx = \frac{5\pi}{8} \left(\frac{1}{n^4} - \frac{16}{25n^2} \right) < 0 = V[0].$$

Следовательно, на функции $y_0(x) \equiv 0$ минимум также не достигается.

Причина указанного явления состоит в том, что экстремаль $y_0(x) \equiv 0$ нельзя включить в поле экстремалей при $x \in [0, \frac{5\pi}{4}]$, так как все решения уравнения Эйлера $y = C_1 \sin x + C_2 \cos x$, удовлетворяющие одному из граничных условий y(0) = 0 или $y(\frac{5\pi}{4}) = 0$, обращаются в ноль одновременно еще в одной точке $x_0 \in [0, \frac{5\pi}{4}]$. Например, если потребовать y(0) = 0, то все кривые семейства $y = C \sin x$ обращаются в ноль при $x_0 = \pi \in [0, \frac{5\pi}{4}]$.

в) В случае $a=\pi$ уравнение Эйлера y''+y=0 имеет семейство решений $y=C\sin x$, удовлетворяющих граничными условиям y(0)=0, $y(\pi)=0$, следовательно, экстремаль определяется не единственным образом. Легко проверить, что в этом случае на любой функции семейства $y=C\sin x$ выполнено $V[y]=\int\limits_0^\pi {(y^2-y'^2)dx} = 0$.

Пример 8.7. Пусть тело перемещается по кривой y = y(x) со скоростью \vec{v} такой, что $|\vec{v}| = v(x, y) = y$. Какова должна быть траектория его движения, чтобы тело попало из точки y(a) = A в точку y(b) = B за минимальное время?

Решение. Время, необходимое для перемещения из точки (a,y(a)) в точку (b,y(b)) по заданной кривой y=y(x), определяется функционалом $t=\int\limits_a^b \frac{ds}{v(x,y)}=\int\limits_a^b \frac{\sqrt{1+{y'}^2}}{y}dx\equiv V[y]$. Таким образом, решение поставленной задачи дается экстремалями функционала V[y] при условиях y(a)=A, y(b)=B.

Уравнение Эйлера в рассматриваемом случае $F_y - \frac{d}{dx} F_{y'} = F_y - F_{y'y'} y'' - F_{y'y} y' = 0$. Умножая на y', получим $\frac{d}{dx} \Big(F - y' F_{y'} \Big) = 0$, и найдем первый интеграл $\frac{\sqrt{1+y'^2}}{y} - y' \frac{y'}{y\sqrt{1+y'^2}} = \frac{1}{y\sqrt{1+y'^2}} = C_1$. Положим $y' = tg\,t$, тогда $y = \frac{\cos t}{C_1}$, $dx = \frac{dy}{y'} = ctg\,t\,dy = \frac{\cos t\,dt}{C_1}$, откуда $x = \frac{\sin t}{C_1} + C_2$. Исключив параметр t, получим $(x-C_2)^2 + y^2 = \frac{1}{C_1^2}$, т.е. экстремалями задачи являются окружности с центрами на оси x.

Итак, искомая траектория движения тела - дуга окружности с центром на оси x, соединяющая точки (a,A) и (b,B). Легко видеть, что такая окружность определяется единственным образом при заданных дополнительных условиях y(a) = A, y(b) = B.

Задачи для самостоятельного решения

Найти вариацию функционала

$$8.1 V[y] = \int_a^b yy'dx.$$

8.2
$$V[y] = \int_{a}^{b} (x+y)dx.$$

8.3
$$V[y] = \int_{a}^{b} (y^2 - y'^2) dx$$
.

8.4
$$V[y] = \int_{0}^{\pi} y' \sin y \, dx$$
.

Исследовать на экстремум функционалы в задаче с закрепленными концами (найти экстремали и проверить достаточные условия каким либо способом):

8.5
$$V[y] = \int_{0}^{1} e^{x} \left(y^{2} + \frac{1}{2} y'^{2} \right) dx$$
 $y(0) = 1, \quad y(1) = e.$

8.6
$$V[y] = \int_{0}^{1} e^{y} y'^{2} dx$$
 $y(0) = 0, \quad y(1) = \ln 4.$

8.7
$$V[y] = \int_{1}^{2} \frac{x^3}{{y'}^2} dx$$
 $y(1) = 1, \quad y(2) = 4.$

8.8
$$V[y] = \int_{0}^{a} \frac{dx}{y'}$$
 $y(0) = 0, \quad y(a) = b \quad (a > 0, b > 0).$

8.9
$$V[y] = \int_{0}^{1} (1+x)y'^{2}dx$$
 $y(0) = 0, y(1) = 1.$

8.10
$$V[y] = \int_{0}^{\frac{\pi}{2}} (y^2 - y'^2) dx$$
 $y(0) = 1, \quad y(\frac{\pi}{2}) = 1.$

8.11
$$V[y] = \int_{-1}^{2} y'(1+x^2y')dx$$
 $y(-1) = 1, \quad y(2) = 4.$
8.12 $V[y] = \int_{-1}^{1} (y'^3 + y'^2)dx$ $y(-1) = -1, \quad y(1) = 3.$

8.12
$$V[y] = \int_{1}^{1} (y'^3 + y'^2) dx$$
 $y(-1) = -1, \quad y(1) = 3$

8.13
$$V[y] = \int_{1}^{2} (xy'^4 - 2yy'^3) dx$$
 $y(1) = 0, \quad y(2) = 1.$

8.14
$$V[y] = \int_{0}^{a} (1 - e^{-y^{2}}) dx$$
 $y(0) = 0, \quad y(a) = b \quad (a > 0).$

8.15 Найти семейство экстремалей функционала
$$V[y] = \int_{a}^{b} \frac{\sqrt{1+{y'}^2}}{x} dx$$
, $-\frac{\pi}{2} < a < b < \frac{\pi}{2}$.

8.16 Среди всех кривых, соединяющих точки (-1, ch1) и (1, ch1), определить ту, которая при вращении вокруг оси Ох образует поверхность наименьшей площади.

Ответы к задачам

8.1
$$\delta V = \int_{a}^{b} (y'h + yh')dx$$
 $(\delta y = h(x))$.

8.2
$$\delta V = \int_{a}^{b} h(x)dx$$
 $(\delta y = h(x))$.

8.3
$$\delta V = 2 \int_{a}^{b} (yh - y'h') dx$$
 $(\delta y = h(x))$.

8.4
$$\delta V = \int_{0}^{\pi} (y' \cos y \cdot h + \sin y \cdot h') dx$$
 $(\delta y = h(x))$.

- 8.5 Экстремаль $y(x) = e^x$ реализует сильный (и слабый) минимум.
- 8.6 Экстремаль $y(x) = 2\ln(x+1)$ реализует сильный (и слабый) минимум.
- 8.7 Экстремаль $y(x) = x^2$ реализует слабый минимум.
- 8.8 Экстремаль $y(x) = \frac{b}{a}x$ реализует слабый минимум.
- 8.9 Экстремаль $y(x) = \frac{\ln(x+1)}{\ln 2}$ реализует сильный (и слабый) минимум.
- 8.10 Экстремаль $y(x) = \sin x + \cos x$ реализует сильный (и слабый) максимум.
- 8.11 На непрерывных кривых экстремум не достигается.
- 8.12 Экстремаль y(x) = 2x + 1 реализует слабый минимум.
- 8.13 Экстремаль y(x) = x 1 реализует слабый минимум.

8.14 На экстремали
$$y(x) = \frac{b}{a}x$$
: при $|b| < \frac{a}{\sqrt{2}}$ достигается слабый минимум;

при
$$|b| > \frac{a}{\sqrt{2}}$$
 - слабый максимум; при $|b| = \frac{a}{\sqrt{2}}$ - экстремума нет.

- 8.15 Окружности $x^2 + (y C_1)^2 = C_2^2$.
- 8.16 y(x) = ch x.